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ABSTRACT 
 

While the emergence of Rasch and related IRT methodologies has made it routine to update tests 
across administrations without altering the original Pass/Fail standard, their insistence on 
unidimensionality raises a problem when the standard combines performance on multiple 
dimensions, such as mathematics and language.  How  combine a student’s mathematics and 
language measures to make a Pass/Fail decision on composite ability when the two scales embody 
different dimensions and logit units?  Using client-determined weights and student expected scores, 
we review existing methods for combining unrelated subscales, encountered in a recent high-stakes 
certification exam, to produce composite logit measures without sacrificing the advantages of 
unidimensional IRT methodologies.  

  



 

THE PROBLEM 

 
Here is a common psychometric problem, encountered in a recent high-stakes certification 

exam: 

For a number of years, examinees have been administered a 100 item exam with 55 mathematics 
and 45 reading items mingled together, plus an essay.  To pass the exam, students must get at least 67 
of the multiple choice items correct, whether on math or reading does not matter (it is a fully 
compensatory exam), plus a minimum essay score which we shall ignore for the purposes of this 
paper.  The items have not been changed in years.  Some are obsolete.  Many are too easy and do not 
reflect current standards.  The client wants to switch out some of the old items for new, harder items, 
but in such a way that the examinees who take the new test are held to the same standard as 
examinees who took previous versions of the test.  How do we update the test without changing the 
Pass/Fail standard? 

(For ease of reference, the old test form is referred to as the Winter 2003 test form while the 
refreshed test form is referred to as the Spring 2003 test form.  An additional test form was 
administered in Fall 2003.) 

This type of problem is routinely dealt with using some form of IRT model such as the Rasch (1-
PL) model.  Item difficulties are calculated.  By linking the Winter and Spring tests with common 
items, the relative difficulty of the new test can be taken into account when computing person 
measures.  This is common-item equating and allows examinees from both administrations to be 
held to the same standard.   

In this case, since the test remained essentially unchanged for years, there had been no IRT 
equating, nor any need for it.  Examinees passed if they got 67% of the items correct.  So long as the 
test remained unchanged, this was a valid way to hold students from different test administrations to 
the same standard.  However, in the process of updating the test to make the Spring form harder, the 
67% rule ceased to reflect the original performance standard.  An examinee required to get at least 
67% of items correct on an easy test is not being held to the same standard as an examinee required 
to get 67% correct on a hard test.  

When all the test items lie in the same dimension -- measuring the same type of ability -- 
common-item Rasch equating is straightforward.  This is because the Rasch model is unidimensional 
in its specifications.  It requires items to share a single dimension as a condition of fit between the 
model’s predictions and the data, and indeed common-item equating only makes sense in terms of a 
single dimension.  For our exam, this was not the case.  Examinees were being held to a composite 
standard of performance on math and reading items -- demonstrably different dimensions, though 
somewhat correlated.  How do we equate a 2-dimensional test across different administrations using 
a 1-dimensional measurement model?  This paper reviews several ways to approach this problem, 
focuses on one in particular, and presents results from a recent certification exam. 

APPROACHES 

There are four main approaches to dealing with this problem: 

1. Leave the test as is.  In practice, this is the most common “solution.”  Regardless of 
the dimensionality of the test, whether it contains one or two or 10 dimensions, so long 
as the same test form is administered from year to year the examinees are being held to 
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the same standard – for the most part.  The qualification is necessary because of “item 
drift,” the tendency of items to change their difficulties over time for a variety of causes, 
usually becoming easier.  One cause of drift is that when items are re-exposed from year 
to year, the examinee population catches on and learns how to prepare, making the 
items easier.  This is particularly worrisome when there are real consequences attached 
to the test, since the incentive for cheating is much higher.  
 
Because of item drift, there is a tendency for student measures to appear to drift upward 
through the life of a test form, then to drop precipitously when a new test form is 
administered, resulting in an artifactual saw tooth pattern in student achievement.  This 
is one reason why it is preferable to refresh tests with new items on a regular basis, but 
this requires psychometric methods of test equating.  Hence, the next approach. 

2. Rasch-analyze the full 2-dimensional test all at once.  This is feasible when the two 
dimensions are reasonably correlated, as Math and Language are (r = 0.66 in this case).  
We anchor the test on the Winter item difficulties and set a logit cut-point (0.708 logits) 
that corresponds to a 67% success rate.  Although the Spring students are exposed to a 
more difficult test form, because they are measured on a scale that has been calibrated 
relative to difficulty of the Winter test items they are held to the same standard as the 
Winter students. 
 
Unfortunately, this approach suffers several theoretical shortcomings that arise from 
trying to analyze 2-dimensional data with a 1-dimensional IRT model. 

a. Analysis of fit becomes difficult.  This is because item misfit is now driven by 
the disturbing presence of the secondary dimension.  In our case math is the 
dominant dimension and language is the secondary dimension.  In attempting 
analysis of fit we observe that a number of language items are misfitting, so we 
suspend them from the analysis and recalibrate.  But this has causes the 
composite dimension to shift closer to the pure math dimension, making a new 
crop of language items misfit.  We suspend these, too.  The composite 
dimension shifts even further toward math, causing yet more language items to 
misfit.  Eventually, we have no language items left and are left with a 
unidimensional math test.   
 
Many analysts prefer to skip the analysis of fit stage altogether.  Then, of course, 
they forego the benefits of such analysis – to identify bad items and make the 
test such that it yields reproducible results.  A better alternative is to perform 
analysis of fit on the math and language dimensions separately.  When the 
dimensions have been separately “cleaned,” the math and language items are 
combined in a composite run, at which point the fit statistics are ignored as an 
artifact of multidimensionality.  

b. When equating, it is hard to control the composite dimension.  Equating a 2-
dimensional test is theoretically straightforward if we can assume that all math 
items equally represent the math dimension and all language items equally 
represent the language dimension.  When this is the case, the orientation of the 
composite dimension is controlled by adjusting the relative weights of the two 
dimensions.  Unfortunately, items only approximate the dimension at which 
they are aimed, and often the correlations are surprisingly low (on our test, the 
point-biserials range from 0.05 – 0.44 for language, from 0.09 – 0.48 for math), 
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lower than the correlation between the two content dimensions (r = 0.66).  
Therefore, when it comes time to update the test with new items, it is hard to be 
certain that the new composite dimension exactly corresponds to the old 
composite dimension.  If the composite dimensions are even a little different, 
the relative pass rates on the two tests may shift significantly in a way that is 
purely artifactual. 
 
It helps to anchor the scale on the difficulties of the original items, but this does 
not guarantee that the new composite dimension is the same as the old one.  
Nor can we apply analysis of fit to force the dimensions to be the same, since 
the fit statistics are now confounded by the effects of multidimensionality.  In 
the end, we are forced to go back and analyze the math and language 
dimensions separately in order to take advantage of the analysis of fit procedure 
which makes it possible to bring the old math dimension into line with the new 
math dimension, and the old language dimension into line with the new 
language dimension.   
 
This brings us to the next approach. 

3. Analyze the math and language subscales separately, then combine them 
somehow.  Treating the subscales separately is appealing from a theoretical perspective 
because it fits better with the specifications of the Rasch model and holds out the 
promise of true unidimensional equating.  In our case, this means equating the Spring 
form with the Winter form in terms of common items for math and language separately.  
Fit statistics and point biserials are used to identify those items which best embody their 
respective dimensions and which best fit the dimension of the Winter subscale.  Items 
with poor fit or low point biserials are suspended from analysis.  A similar analysis may 
be performed at the examinee level in order to clarify the latent dimension. 
 
The problem is to figure out how to combine the math and language measures to 
determine the Pass/Fail status of an examinee in a way that is comparable with the 
original standard.   
 
One approach that does not work is to combine the logits from the math and science 
subscales.  This is because the two logit subscale metrics are not directly comparable.  
Although logits retain a constant probabilistic meaning across tests, their scaling can 
change due to the fact that probabilities are a function both of the latent variable and of 
administration-specific variance or “noise.”  Thus, the same test can be administered to 
the same students and yield different logit metrics on different occasions, even though 
the students maintain the same relative positions on the scale.  This means that logit 
measures from different subscales cannot simply be combined or averaged in some way 
if the subscales lie on different dimensions.  (If they lie on the same dimension, a simple 
scaling factor equates them.) 
 
A simple solution becomes apparent when we reconsider what is meant by test equating.  
Consider the following definition: 
 
Two tests forms (from different administrations, in this case) are considered 
equated if, from an examinee’s response vector on the second test, it is possible 
to predict what the same examinee’s response vector would have been on the first 
test. 
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The definition seems sensible enough.  It states that we can compare examinees from 
two test administrations if we can somehow predict how each group of examinees 
would have performed on the other test.  This allows the two groups to be compared in 
terms of the same test, which is exactly what conventional Rasch equating does by 
means of common test items.  Note, however, that the above definition makes no 
mention of unidimensionality.  In other words, unidimensionality is not a necessary 
precondition of equating, however useful it may be as a convenient assumption for 
facilitating prediction across forms. 
 
Therefore, in order to equate the Winter and Spring 2-dimensional forms, it should be 
enough to predict how many items an examinee would have gotten correct on the Winter 
form based on his performance on the Spring form.  This prediction can be obtained by 
converting the examinee’s logit measures on the math and language subscales into 
expected scores for each subscale, and it is these expected scores (which are simply 
predictions of raw scores) that can be added and weighted to yield a hypothetical 
composite test score for the Spring examinee on the Winter test.  There are two 
methods for calculating expected scores, described in detail in the next section.  The 
Pass/Fail decision is made by determining whether the composite expected test score as a 
percentage of the whole test exceeds the 67% threshold. 

4. Employ a non-unidimensional IRT model to compute the necessary expected 
values.  Because the Rasch model specifies unidimensionality as a condition of fit, it is 
ideally used on only one dimension at a time in order to retain its most important 
properties.  A non-unidimensional scaling model (NOUS), on the other hand, relaxes 
the unidimensionality requirement for a given test, allowing the computation of 
expected scores for each cell in the matrix even when the items participate in any 
number of different dimensions.  It is distinguished from existing multidimensional 
Rasch models by its method of sharing information across item subscales.   
 
Unfortunately, such models are new in the field of Item Response Theory and have yet 
to be studied properly.  (Moulton, 1996, 2001, www.aobfoundation.org.)  Nonetheless, 
the application is fairly straightforward.  A data matrix is constructed consisting of 
Winter and Spring items, both math and language, each row corresponding to an 
examinee from one of the two administrations.  Blank cells exist for items belonging to 
an administration the examinee did not attend.  The NOUS model analyzes all the data 
together, trading information across subscales, and computes expected values for each 
cell of the matrix including the missing cells.  The sum of expected values across the 
Winter items becomes the score for each examinee, regardless of test administration.  
Thus, NOUS yields a very direct answer to the question, “How would a Spring 
examinee have performed on each item given in the Winter administration?”  In this 
way, the Spring examinees are made comparable to the Winter examinees, whose scores 
are also sums of expected values on the Winter items. 
 
It seems likely that problems of this type, which involve multidimensional datasets, will 
eventually be handled by some form of non-unidimensional IRT model.  Until such 
models are fully understood, however, the unidimensional models are the tool of choice. 
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COMBINING SUBSCALES USING EXPECTED SCORES:   TWO METHODS 

As mentioned above under the third approach, there are two methods for converting logit 
subscale measures for math and language into expected scores that answer the question, “How 
many items on the Winter test form would this Spring examinee have gotten correct?”   

Method I 

1. Equate the two administrations for each subscale.  Place the mathematics items for the 
two administrations on a common scale by anchoring the Spring items to the Winter math 
items through common items, where the zero point of the logit scale is set by convention at 
the mean of the Winter items.  Perform analysis of fit to ensure that the math items have 
stable and generalizable difficulties and embody a single dimension.   Do the same with the 
language items. 

2. Compute expected proportion correct for each subscale.  Each examinee has a logit 
ability measure for each subscale.  Calculate the difference (θnM – d0M) between examinee n’s 
logit measure and the mean logit difficulty d0M of the Winter test for one of the subscales, 
say, Math (the M subscript).  Convert the difference into an expected proportion correct of 
items on the math subscale using the logistic probability formula: 
 
Expected Proportion CorrectMath = exp(θnM – d0M)/(1 + (θnM – d0M))   Eq. 1 
 
This is the Rasch formula for dichotomous data used to calculate the probability of an 
examinee with a certain ability succeeding on an item of a certain difficulty.  In this case, the 
examinee’s ability is given by his logit ability measure.  The item difficulty is the mean 
difficulty of the items in the Winter administration for that subscale, set at zero by 
convention.  This difficulty may be interpreted simply as the “difficulty of the test,” or when 
subtracted from the examinee’s ability measure, as the expected proportion of items that an 
examinee at that ability level may be expected to get correct on that test. 
 
Compute the Expected Proportion Correct (EPC) for each examinee for both the math and 
language subscales. 

3. Compute examinee Expected Proportion Correct for the whole test.  This requires 
having the client provide weights for each subscale according to its perceived importance in 
meeting the standard.  Such weights are a matter of definition and cannot be empirically 
determined.  Are math and language equally important?  Assign a weight of .5 to each.  Is 
language more important?  Give it a weight of .6 and math .4.  In this case, the client 
assigned math a weight of .55 and language a weight of .45 by simply designing the test to 
have 55 math items and 45 language items.  The weights and the examinee’s expected 
proportion correct are put into the following formula to get the examinee’s expected 
proportion correct for the whole test: 
 
EPC[Whole Test] = (EPC[Math])(W[Math]) + (EPC[Lang])(W[Lang])   Eq. 2 
 
where EPC refers to the Expected Proportion Correct and W refers to the Weight assigned 
to that subscale.  The weights are defined to add to 1. 

4. Compare with the Standard.  It is this number, the expected proportion correct, that is to 
be compared with the original standard to determine whether the examinee passed or failed 
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the test.  In this case, that standard was 67%.  Therefore, if an examinee’s expected 
proportion correct on the test met or exceeded 67%, the examinee passed the multiple 
choice section (we are ignoring the effect of the essay score). 

Method II 

Method II is like Method I in all respects except in how it computes the expected proportion correct.  
In Method II, the expected proportion correct is simply the average of the expected scores of the 
items from the Winter administration, for that subscale.  These expected scores are computed 
automatically by the Rasch software (WinSteps, in this case) as the predictions for each cell which are 
compared to the observed values.  They can be accessed through the IPMatrix the XFile output files.  
However, to get the expected scores for missing cells it is necessary to “fool” WinSteps into believing 
that the matrix is complete.  To do this, anchor all the items and persons at their measured logit 
values and fill the data matrix with nonsense data that is nonetheless analyzable.  WinSteps will then 
report the correct expected values for each cell.  Expected scores can also be computed manually 
using Equation 1 applied to each item individually.  

Method II, while somewhat laborious to implement, has an important advantage over the other 
methods:  It leads to composite scores that approximately match the original raw score pass rate (the 
match is increasingly exact as the number of iterations increases).  Both Method I and Approach 2 in 
the previous section (Rasch-analyze both dimensions simultaneously) lead to expected proportions 
correct that have a slight positive bias, increasing the pass rate by as much as 78 examinees (out of 
1616).  The reason for Method II’s ability to match the original raw score pass rates lies in the 
WinSteps Maximum Likelihood Estimation algorithm, which adjusts the marginal parameters (person 
abilities, item difficulties) until the sum of residuals for each row and column approximates zero.  
This is equivalent to having the sum of expected values equal the sum of observed values, which 
causes the match with the original pass rate. 

While Method II is preferable, Method I results are shown below as it is easier to use. 

Converting Back to Logits 

Expected scores are useful when the passing standards are set in a raw score metric.  However, like 
raw scores, they are non-linear and not useful for actual measurement.  It is for that reason that 
pass/fail standards are generally not set in a raw score metric but in a logit or scale score metric.  Can 
our method be generalized to logit standards?  Yes.  Just convert the examinee’s expected proportion 
correct on the whole test back into a logit metric: 

  Person Measure[Whole Test] - 0 = logn( EPC[Whole Test] / (1 – EPC[Whole Test]) ) 

where EPC refers to the examinee’s expected proportion correct.  The zero term is the mean 
difficulty of the Winter test.  If the person measure meets or exceeds the standard set in that logit 
metric, the student passes.  In this case, the 67% standard corresponds to a cut-point of 0.708 logits. 

Note that with both methods we have inadvertently equated the logits from two separate subscales.  
This was only possible because we tacitly assumed the expected proportions correct for the two 
subscales to be comparable.  We assumed in effect that the difference between getting 70% and 50% 
of math items correct has the same meaning as the difference between getting 70% and 50% of 
language items correct.  In subscales that are similarly “noisy,” as one would expect of subscales 
drawn from the same test administration, this is a reasonable assumption.  
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RESULTS WITH THE WINTER/SPRING/FALL ASSESSMENT DATA 

The raw score pass rates for the Winter assessment are shown here, plus the pass rates for three of 
the theoretical methods described above.  These numbers show that all three theoretical methods 
approximate the true rate quite closely, with a maximum of 78 out of 1616 false positives, i.e., 
examinees who pass based on their theoretical scores but who fail based on their observed raw 
scores.  Method II yields exactly the same pass rate. 

Table 1:  Pass Rates, Observed and Theoretical, for the Winter Administration 

Approach Pass Rate (% of 1616) False 
Positives 

False 
Negatives 

Raw Score 0.638 N/A N/A 
Both Dimensions Rasch-Analyzed 
at Once, 0.708 cut-point 

0.686 78 0 

Method I 0.683 73 0 
Method II 0.638 0 0 
 

Table 2 shows the raw scores and expected scores (Method I) for three administrations (Winter 2003, 
Spring 2003, and Fall 2003) for Math and Language.  We see from the raw scores that the Spring and 
Fall tests were much more difficult than the Winter 2003 test due to the introduction of harder items.  
Without some form of equating, such differences in raw scores would lead to the mistaken 
conclusion that the examinee aptitudes in Math and Language dropped significantly.  The Average 
Expected Scores tell a truer story.  For all three administrations, they were essentially the same as one 
would expect for a time-frame less than a year. 

Note that the Winter 2003 Average Raw and Expected scores are similar but not identical.  This is a 
statistical artifact of Method I.  Using Method II, the two become identical. 

Table 2:  Comparison of Raw and Expected Scores, 3 Administrations 

Mathematics Language  
Average Raw 

Score 
Average Expected 

Score 
Average Raw 

Score 
Average 

Expected Score 
W03 Administration 36.1 37.6 34.1 36.3 
S03 Administration 32.4 36.4 31.0 36.7 
F03 Administration 32.4 35.9 28.9 36.6 
 

Conclusion 

The Rasch logit metric necessarily embodies a single dimension, valid only for a specific type of item.  
Raw scores or percentages can apply to any number of item types.  By exploiting the ability to go 
back and forth between the logit metric and the score metric by way of theoretical expected scores, 
and by incorporating client-defined weights, it is possible to resolve performance on unrelated 
subscales into a composite expected score or logit measure which can be compared to a standard.  
This makes it possible to update tests and change their overall difficulty without losing the ability to 
compare students on the original composite standard. 
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