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ABSTRACT

To an increasing degree, psychometric applications (e.g., predicting music preferences) are 
characterized by highly multidimensional, incomplete datasets.  While the data mining and machine 
learning fields offer effective algorithms for such data, few specify Rasch-like conditions of objectivity.  
On the other hand, while Rasch models specify conditions of objectivity—made necessary by the 
imperative of fairness in educational testing—they do not decisively extend those conditions to 
multidimensional spaces.  This paper asks the following questions:  What  must a multidimensional 
psychometric model do in order to be classified as “objective” in Rasch’s sense?  What  algorithm can 
meet these requirements?  The paper describes a form of “alternating least  squares” matrix decomposition 
(NOUS) that meets these requirements to a large degree.  It shows that  when certain well-defined 
empirical criteria are met, such as fit to the model, ability to predict  “pseudo-missing” cells, and structural 
invariance, NOUS person and item parameters and their associated predictions can be assumed to be 
invariant and sample-free with all the benefits this implies.  The paper also describes those conditions 
under which the model can be expected to fail.  Demonstrations of NOUS mathematical properties are 
performed using an open-source implementation of NOUS called Damon.
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1.0  BACKGROUND

1.1  SPECIFIC OBJECTIVITY

A student takes a test with items 1 - 20.  Another student  takes a test on the same subject  with items 
10 - 30.  Though 10 items are overlapping, the tests are different.  The problem of psychometrics -- 
perhaps most clearly identified by Danish mathematician Georg Rasch in 1960 -- is to answer the 
question, “How can we compare two students who take different tests as if they had taken the same test?”  
The answer Rasch proposed is to impose a model and scoring procedure that  generates scores for which it 
can be demonstrated that each score does not  depend on the sample of items a student  takes.  Any sample 
of items should yield the same score.  This sample-independence property he called “specific objectivity”, 
and it  is the defining characteristic of the Rasch model.  A test that  meets the conditions of this model can 
be called “fair”.  The Rasch model is typically formulated as:

  Eq. 1

where Xni is a dichotomous (0,1) observation, ßn is the ability of person n and δi is the difficulty of item i.  
Note that  the probability of success is a function solely of a person (row) parameter and an item (column) 
parameter, with no interaction terms.  Rephrased as a deterministic model in matrix notation and recasting 
item difficulty as item easiness, the following is conceptually equivalent:

 Eni = Rn • Ci Eq. 2

where each element  Eni of estimates matrix E is the dot  product of vector n of row (person) matrix R and 
vector i of column (item) matrix C  under the constraints that  0.0 < Eni, Rn, Ci < 1.0 and vectors n and i 
contain only one element, i.e., the dimensionality is 1.

Over the next  30 years or so, the Rasch model gained acceptance in the fields of education and 
licensure as the strictest  of a family of Item Response Theory models in its adherence to the specific 
objectivity requirement.  The model has been used widely in those fields for several reasons:

1. Fairness.  It is a strong requirement  in high stakes testing that all examinees be comparable solely 
in terms of the construct of interest  and that scores differ for no other reason than ability on this 
construct.  The Rasch model provides defensible statistical criteria for making the claim that  fairness 
has been achieved.

2. Unidimensionality.  The Rasch model requires unidimensionality (all items testing for the same 
kind of ability) in order to achieve its special objectivity property.  As it  happens, the datasets 
generated in the field of educational are generally, though not necessarily, reducible to a single ability 
dimension.  This is in part  due to deliberate test  design, in part due to the widespread use of multiple-
choice questions which, taken one by one, tend to be so indeterminate in the dimension they imply 
that they yield a single (somewhat messy) composite dimension when aggregated. 

3. Missing Data Designs.  Missing data is a characteristic of most  real-world datasets but  it  is 
especially important  in the field of education.  This is because it  is often desired to compare students 
from different  grades or ability levels.  Because students at different  ability levels need to be given 
tests appropriate to their level (though containing items that  “link” to other levels), the aggregate 
dataset of all students will contain large blocks of non-randomly missing cells.  Because Rasch 
student  scores do not  depend on which items a student  takes, these missing blocks do not  compromise 
the ability to compare students from different ability levels.
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The chief limitation of the Rasch model is that it derives its properties by restricting itself to one 
dimension in a given analysis.  Fields such as spectral analysis, latent semantic analysis, image 
recognition, genetics, consumer preference prediction, market forecasting, artificial intelligence, and so 
on, with datasets that are often highly and intrinsically multidimensional, are beyond the reach of 
unidimensional models.  

1.2  SINGULAR VALUE DECOMPOSITION

Discovered independently several times since the 1800’s, Singular Value Decomposition (SVD) has 
been widely used since practical methods for implementing it were developed in the 1950’s and 1960’s.  
SVD decomposes a data matrix, potentially of a high number of dimensions, by modeling it  with the mxn 
matrix M defined as the product of three matrices:

 M = UΣV* Eq. 3

where U is an mxm real or complex unitary matrix, Σ is an mxn rectangular diagonal matrix with 
nonnegative real numbers on the diagonal, and V*  (the conjugate transpose of V) is an nxn real or 
complex unitary matrix (Wikipedia, Singular value decomposition, May 14, 2013).  Matrix Σ, the 
numbers on the diagonal of which are called “singular values”, controls the rank or dimensionality of the 
SVD representation of M. The number of singular values can be no larger than m (the number or rows/
columns in U and the size of M along its smallest axis).  When all m  values are greater than zero, the 
resulting matrix M exactly reproduces the data matrix the SVD is applied to.  The dimensionality is 
reduced by setting some of the singular values to zero.  An SVD where Σ consists of three non-zero 
singular values produces a matrix M which is a 3-dimensional representation of the data.

Once the rank (dimensionality d) of Equation 3 has been decided, Equation 3 can be restated as the 
outer product  of an mxd row matrix R and a dxn column matrix C.  Changing M to E to make notation 
consistent the value of each element Eni is:

 Eni = Rn • Ci Eq. 4

which is the same formally as Equation 2, the matrix restatement of the Rasch model, except  that  -∞ < 
Eni, Rn, Ci  < ∞ and vectors n and i contain d elements.  Thus, the Rasch model can be thought  of as a 
special case of SVD in which the vectors are required to be positive (expressible as probabilities) and the 
dimensionality is 1. 

Despite their formal similarities, the algorithms for implementing the Rasch model and SVD are quite 
different, with important practical implications:

1. Missing Data.  SVD, applied to the data matrix as a whole using the techniques of linear algebra, 
requires complete data.  Rasch algorithms such as JMLE (Joint  Maximum Likelihood Estimation) 
iteratively solve for each row and column individually and can ignore missing cells.

2. Probabilities.  SVD assumes interval data and computes row and column parameters accordingly.  
Rasch assumes ordinal data and computes probabilities for its row and column parameters and for 
each “step” between adjacent categories.

3. Convergence Goal.  SVD minimizes the Frobenius norm (the sum of squared residuals) between 
observations matrix X and estimates matrix E.  Rasch finds parameters that  maximize the likelihood 
of X.

In addition, the goals of the two methodologies are quite different.  The goal of Rasch is to create a 
generalizable measurement  structure and to filter out all data that might potentially or actually get in the 
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way.  It  does this by forcing analysts to collect and edit  data in such a way that it  can be described 
sufficiently by locations along a single dimension.  The goal of SVD is to describe a dataset  concisely as 
the product of two matrices.  While singular values are often examined with an eye toward reducing the 
rank (dimensionality) used to describe the data, the criteria for choosing a dimensionality are not always 
clear.

The big advantage that SVD has over Rasch is that  it  can model highly multidimensional datasets that  are 
intractable with 1-dimensional models.

1.3  ALTERNATING LEAST SQUARES

The Alternating Least  Squares (ALS) family of algorithms offers an alternative to SVD for 
calculating R and C.  It  is simple, efficient, converges, is robust to variation in data types, handles 
constraints gracefully (e.g, that  R and C  be nonnegative), generalizes to higher order tensors (analogous 
to “facets” in the Rasch literature (Linacre, 1994), and most important, is able to handle missing data.  
ALS has arisen in multiple fields, often independently, since at least  the 1970’s.  Important early 
contributors in the field of psychometrics in the 1960‘s and ‘70‘s are Tucker, Carroll and Chang, Kruskal, 
Harshman, and Kroonenberg and de Leeuw.  Appelloff and Davidson introduced similar ideas in 
chemometrics (1981).  Lee and Seung were seminal in developing nonnegative ALS (1999).  Kolda and 
Bader provide a very useful survey of the work done generalizing ALS to higher order tensor (“many-
facet”) decompositions (2008).  The last  two decades have seen a flowering of ALS-related algorithms, 
and they have played a leading role in such data-mining competitions as the Netflix Prize (2009) and the 
Yahoo! KDD-CUP (2011).  Hu, Koren, and Volinsky (2008) describe how Alternating Least Squares can 
be used to develop recommender systems (e.g., movies) and how it  is well suited for massively parallel 
distributed processing.

Parallel to the development  of multidimensional ALS decomposition algorithms, but  quite distinct 
from it, the field of Multidimensional Item Response Theory (MIRT) has evolved a family of probability 
models for handling multidimensional test data.  Mark Wilson and Mark Reckase are seminal figures in 
this field, though their models are quite distinct.  Reckase has published a useful history and explanation 
of MIRT (2009).  Wilson, Adams, and Wang (1997) published an important paper describing the 
multidimensional random coefficients multinomial logit model.

The form of ALS discussed in this paper, called NOUS, was independently invented by Howard 
Silsdorf in 2001 in collaboration with the author, who subsequently elaborated it.  It  is implemented in the 
open-source Python package Damon.  In many ways it  is a rediscovery of previous forms of ALS.  It 
differs primarily in the philosophical emphasis that it  places on finding the optimal rank, or 
dimensionality, of R and C, and in the procedures used to do so.

1.4  SPECIFICATIONS OF AN “OBJECT-ORIENTED” MULTIDIMENSIONAL MODEL

It  is beyond the scope of this paper to attempt a comparison of the various models and algorithms 
referred to here.  Instead, we focus on the properties one would hope to find in an object-oriented 
multidimensional model.  The term “object-oriented” is used in preference to “objective” to indicate that 
objectivity is a goal of analysis, an analytical orientation, not  a property of algorithms per se.  It also 
makes the important  epistemological point that the goal of such a model is to abstract  entities (persons, 
items) from the datasets in which they appear, to view them as “objects” separable from their context.

An object-oriented multidimensional model should have the following properties:

1. Fit multidimensional data.  It  should produce cell estimates that fit observed values within 
statistical tolerances, even when the items are not  all measuring along the same dimension or 
construct and are to varying degrees uncorrelated or negatively correlated, i.e., the dataset is 
multidimensional.
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2. Objective Dimensionality.  It  should be possible to determine unambiguously the number of 
dimensions of the common space within which the items and persons are located.  In other words, 
persons and items should not be the only objects under consideration.  The space itself should be 
interpretable as an object with invariant attributes, and the most important of these attributes is its 
dimensionality.

3. “True” estimates.  Each cell estimate should be as close to the “true” value for that cell as 
possible given the data available.  It should approximate the value that  would be obtained by 
independently repeating the observation for that cell an infinite number of times and averaging the 
observations.

4. Predict missing values.  It  should accurately predict values of missing cells, regardless of whether 
they are randomly missing (the examinee did not  respond) or missing by design (as in test equating).  
It should also handled sparse datasets, where more than 90% of the data are missing.

5. Person invariance.  It should locate persons in space such that their positions remain the same 
regardless of the sample of items they answer, assuming that  each sample of items erects the same 
space.

6. Item invariance.  It should locate items in the same space as the persons, and the positions of the 
items should remain the same regardless of the sample of persons that responds to the items.

7. Misfit  when invariance (objectivity) is not  achieved.  When a person’s response to an item varies 
due to variation in dimensions that are not  part of the space erected by the remaining items on the test, 
that response should be significantly different  from the value predicted for it.  In other words, the 
model’s predictions and the observed values should disagree.  Put another way, model estimates 
should not overfit the data.

8. Minimal influence by observations.  The model should make it possible to minimize the influence 
of any given observation on its corresponding cell estimate.

9. Maximal use of information.  The model estimate for each cell should use all relevant information  
in the dataset and be correspondingly precise.

10. Portability.  Person and item parameters should be portable across datasets of the same kind, so 
that results of one analysis can be applied to another.

11. Sufficiency.  Item parameters should on their own be sufficient to summarize the data 
corresponding to each item without recourse to person parameters, and vice versa.

12. Standard errors.  Each cell estimate—how a person is expected to score on an item—should be 
accompanied by its own variance statistic and standard error.  The variance statistic should represent 
the expected residual between the estimate and the observation.  The standard error statistic should 
represent the expected residual between the estimate and the “true” value.

13. Small, unrepresentative samples.  The model should not depend for its properties on the statistical 
benefits of large or representative samples.

This paper offers evidence that NOUS, suitably applied, leads to results that enjoy these properties to 
a large degree.
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2 .0  THE NOUS ALGORITHM

2.1  CALCULATION OF R, C

Consider an nxi matrix X of data values.  For ease of visualization, think of the rows as persons, the 
columns as items, each data value as a crude measure of how a person performed on an item.  Let us 
assume for now that  the cell values are interval measures, that the data matrix may be multidimensional, 
and that items may be more or less correlated, or negatively correlated, with each other.

The user specifies a range of dimensionalities d = {D1, D2, ..., Dk}.  For the first dimensionality 
(order does not  matter) NOUS initializes an nxd matrix R to contain person coordinates and a dxi matrix 
C  to contain item coordinates.  (The row and column vectors Rn and Ci are called coordinates, as they are 
spatial coordinates mapping a space of d dimensions.)  C is populated with a set  of random numbers 
called a “seed”.  C  is used in conjunction with the data in the first row to compute a set of coordinates for 
that row, the first  row in R, using ordinary least  squares.  The process is repeated for the second row, and 
so on, until R is populated with values.  Then R is used in conjunction with the data in the first  column to 
compute a set  of improved coordinates for the first column in C using ordinary least squares.  The process 
is repeated for each column in C.  C  is used to recompute R and R used to recompute C, improving them 
iteratively until a stopping condition is met.  The alternating calculation of least squares solutions is why 
the algorithm is called “alternating least squares.”

R and C  are called tensors, or facets.  There is no limit to the number of facets that can be used to 
model the data.  A 3-facet example might  be raters evaluating how persons perform on items—each data 
value is modeled as the product of a person vector, an item vector, and a rater vector.  However, this paper 
limits itself to the 2-facet case.

Thus, given the system of equation Uv = x, where U is an array of row or column coordinates, x is the 
data corresponding to a specified row or column, and v is a vector of coordinates for that  row or column, 
a least squares solution to the system denoted by v[solution] will also be a solution to the associated 
normal system,

 UTUv = UTx Eq.  5

If U has linearly independent  rows and the system is over-conditioned (there are more observations than 
unknowns (dimensions) in v, then a unique least squares solution is given by,

 v[solution] = (UTU)-1 UTx Eq.  6

so that the least squares solution for each row and column is

 vR[solution] = (URTUR)-1 URTxR Eq.  7

 vC[solution] = (UCTUC)-1 UCTxC Eq.  8

If any cells are missing in x for a given row or column, the corresponding vectors in  U are ignored 
when calculating v. 

So far, this describes a fairly conventional interpretation of ALS.  Where NOUS differs is that for a 
given dimensionality d it  computes three statistics to assess the “objectivity” of the solution.  First, it 
computes estimates E[pseudo-missing] for a random selection of cells that have been made “pseudo-
missing” prior to the analysis.  The product-moment correlation of these estimates and their 
corresponding original data values X[pseudo-missing] is defined to be the Accuracy statistic:
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 E[pseudo-missing] = R[pseudo-missing] • C[pseudo-missing] Eq.  9

  Accuracy ≣correl(X[pseudo-missing], E[pseudo-missing]) Eq.  10

NOUS also calculates a “stability” statistic for dimensionality d.  This is obtained by applying ALS to 
separate quadrants of X, as follows

1. Column coordinates.  Calculate column coordinates using only half the rows (“the first half”).

2. Group 1 row coordinates.  Divide the columns into two groups, Group 1 and Group2.  Then using 
only data from the “second half’ of rows (not  used to compute column coordinates), calculate a set  of 
row coordinates, called the Group1 row coordinates.

3. Group 2 row coordinates.  Repeat Step 2 with the Group 2 columns, resulting in Group 2 row 
coordinates.

4. Correlate Group 1 and Group 2 coordinates.  If the correlation between the Group 1 and Group 2 
coordinates is 1.0, Rasch’s person invariance requirement (Property 3 above) has been exactly met for 
at  least the Group 1 and Group 2 samples.  The person coordinates are the same regardless of which 
sample of items is used to calculate them.

Thus,

  Stability ≣correl(R[Group 1], R[Group 2]) Eq.  11

NOUS defines a third statistic, “objectivity”, to be the geometric mean of Accuracy and Stability:

  Objectivity ≣ (Accuracy * Stability)(1/2) Eq.  12

ALS is applied at  each dimensionality d in the specified range and objectivity statistics are calculated.  
The dimensionality with the highest objectivity D[objective] is selected as “final” and defined to be the 
“objective dimensionality” of the dataset.  ALS is applied again at D[objective], with the pseudo-missing 
cells restored, to compute R and C.

In addition to being used to assess each dimensionality, Objectivity is used to assess “seed” random 
starter coordinates.  When the data is free of noise, it  can be shown that all seeds will lead to the same 
solution E (though a different  R and C).  However, as noise is introduced the choice of starter coordinates 
makes a difference.  NOUS computes objectivity statistics for each of a specified sample of seeds and 
selects the seed that leads to the most objective solution.

The above procedure suffices as an overview of the NOUS algorithm, but  it  is far from complete.  For 
instance, at each iteration the row coordinates matrix R is (optionally) converted into its orthonormal 
equivalent  using QR decomposition.  This has a number of important  benefits.  It  improves the numerical 
stability of the algorithm by avoiding ill-conditioned matrices.  It improves the interpretability and 
usability of the column coordinates by making it  possible to use column coordinates to estimate the 
variance of the column estimates, as well as to estimate the correlation between any two columns 
(equivalent to the cosine of the angle between those columns) without  having actually to compute those 
estimates.  To the degree that R and C  are objective (Objectivity = 1.0), these statistics will enjoy 
comparability for every subsample of persons, regardless of data errors or missing cells, and the cosine/
correlation statistic between two columns will be the same for each subsample of rows.
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In addition, NOUS (optionally) down-weights the influence of very large coordinates on downstream 
solutions.  This avoids “influence traps” caused by a few coordinates inadvertently dominating 
downstream calculations due merely to the accident of choice of starter coordinates.

2.2  MISSING DATA

It  is important to note that the above procedure is robust to missing data.  This is due to the piece-
meal nature of ALS -- for any given row or column, only those coordinates are used for which there exists 
observed data.  All other cells are ignored.  For example, if the first cell in a row with 10 observations is 
missing, the least  squares solution for the row is computed using only observations 2 - 10 and only the 
corresponding column coordinates C[2 - 10].  The solution is valid to the degree that  the system of 
equations solved by least squares is over-determined, i.e, there are more equations than unknowns.  This 
is a well-known property of solving simultaneous equations and is the basis of Gaussian least squares.  
That means in order to calculate a least squares solution for a given row, the number of observations must 
exceed the dimensionality under consideration.  Otherwise, an error is returned for that row.

This approach to missing data has several important implications:

1. It  does not matter how many cells are missing in a given row or column, so long as there are at 
least as many observations as the specified dimensionality (the more the better, obviously).

2. If the model fits the data at the objective dimensionality, it  does not  matter which cells are 
missing in a given row or column.  The remaining observations combined with the corresponding 
coordinates will lead to (approximately) the same least squares solution.

3. There is no need to impute values for missing cells in order to perform an analysis.  They are 
ignored anyway.

4. NOUS can be applied to sparse data matrices, with high percentages of missing cells.

5. If the model fits the data at  the optimal dimensionality, NOUS estimates for missing cells are not 
merely statistically plausible values.  They are definite predictions that can be expected to 
approximate the “true” value.

2.3 ESTIMATES, VARIANCE, FIT, STANDARD ERROR, SEPARATION, RELIABILITY

Having calculated row coordinates R and column coordinates C  at the objective dimensionality 
D[objective], it is straightforward to compute statistics corresponding to each individual cell of the 
complete data matrix.  The primary statistic, the cell estimate for each cell, is given by:

 Eni = Rn • Ci Eq. 13

These estimates exist for every cell, including those that are missing.  They can be interpreted as the 
most likely value of the cell given the rest  of the data in the array.  They can also be interpreted as an 
estimate of the “true” value of the cell, which is defined as the value that  would be obtained if an infinite 
number of independent observations for that cell were averaged.  Yet again E can be interpreted as the 
orthogonal projection of X into the D[objective] subspace.  The accuracy of the estimate is governed by 
the total number of observations in the dataset and the objectivity of the system.

Each cell with an observation has a residual:

 Resni = Xni  - Eni  Eq. 14
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NOUS defines the variance of each cell in terms of the absolute residual that  is expected for it.  This 
statistic is called the Expected Absolute Residual (EAR).  It is calculated by applying NOUS to the matrix 
of absolute residuals, specifying a dimensionality of 1 (d = 1).  Absolute residuals are preferred to squared 
residuals in this context because they are easier to analyze with NOUS.

 EARni = NOUS(Resni, d = 1) Eq. 15

Because NOUS can estimate missing cells, an EAR statistic can be calculated for every cell in the 
data matrix, including missing.  It is interpreted as the expected absolute difference between the estimate 
and the raw observation given the other residuals observed for that  cell’s row and column.  The EAR 
statistic is used to calculate fit statistics.  The misfit  for a given cell is given by the ratio of the observed to 
expected absolute residual:

 Misfitni = Resni / EARni Eq. 16

Cell misfit statistics can be aggregated across the rows and columns in various ways to generate row and 
column-level fit statistics.

While the EAR statistic is good for estimating the “noisiness” of a given cell, it is not  appropriate for 
significance tests.  It estimates the residual between the observation and the estimate, not  between the 
“true” value and the estimate.  For a large dataset, it is quite possible that an estimate is highly accurate 
and reproducible even as its observed data are very noisy.  The statistic that  captures the true accuracy of 
the estimate is its standard error.  In NOUS, for a 2-facet system, the standard error is:

  Eq. 17

where N is the number of observations in the nth row, I is the number of observations in the ith column, 
and D is the objective dimensionality.  A perusal of the formula shows that it  is similar in form to the 
ordinary statistical standard error:  SE = SD/sqrt(N).  The difference is that it  takes into account the 
number of unanchored facets (2 in this case), the number of observations in the row and column, and the 
dimensionality (equivalent  to degrees of freedom).  As the number of observations in either the row or 
column approaches the number of dimensions, the standard error grows to infinity.  The formula easily 
generalizes to more than two facets.  

Having cell standard errors makes it possible to perform significance tests with estimates.  In addition it 
makes it possible to compute Separation and Reliability statistics for each row and column.

 Separationi = (SDi2  - RMSEi2 )1/2 / RMSEi Eq. 18

 Reliabilityi = Separationi2 / (1 + Separationi2) Eq. 19

where i refers to the ith column or, alternatively, to the nth row and RMSE refers to the Root Mean 
Squared Error, an aggregation of the cell standard errors for that  row or column.  Reliability is the NOUS 
equivalent  of the Cronbach-alpha statistic and, in conjunction with other item statistics, is a useful 
indicator of item quality.
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2.4  DATA REQUIREMENTS

NOUS has definite limits on the types of data it  can analyze successfully, i.e., for which it  accurately 
predicts the values of missing cells and derives stable coordinate structures.

1. Structured data.  The noisier the data and the higher the measurement error associated with each 
cell, the less successful NOUS will be.  At  the extreme of perfectly random data, NOUS will be no 
more accurate predicting the values of missing cells than simply taking the average of the whole 
array.

2. Common metric.  NOUS requires that all cells be in the same metric whatever that  may be.  This 
often requires “pre-standardizing” the data, generally to an interval metric.  Binning data values to 
create a dichotomous array, then converting the 0’s and 1’s into “pseudo-logits”, has also proven to be 
a useful strategy in some cases, though it  invites problems caused by violation of the item 
independence requirement.

3. Interval data is ideal.  Ordinary least  squares requires interval-type data, and to that extent NOUS 
does as well.  However, it is often applied successfully to ratio, ordinal, and dichotomous data.  When 
NOUS has trouble with a type of data, it will often find a higher dimensional solution that leads to 
satisfactory solutions.

4. Gauss-Markov requirements.  The Gauss-Markov theorem states that  ordinary least  squares, the 
basis of ALS, yields the best linear unbiased estimator (BLUE) when the errors have an expectation 
of zero, are uncorrelated, and have equal variances (i.e., are homoscedastic).  (Wikipedia, Gauss-
Markov Theorem, April 8, 2012).  Ordinal and dichotomous data violate the homoscedasticity 
requirement, though this has less of an effect on NOUS than one might expect  due to the mutability of 
R and C.  NOUS includes an Iteratively Reweighted Least Squares (IRLS) option to address 
heteroscedasticity, though this has proven unnecessary.

5. Common space.  An exact analog of the Rasch unidimensionality requirement, NOUS requires 
that either row entities or column entities (generally column entities, items) be sensitive to the same 
set of dimensions and insensitive to all other dimensions.  This is the canonical requirement  of 
NOUS.  What this means mathematically is that  each item have non-zero values on each dimension in 
the common space and zero values on all other dimensions.  What this means in practice is that  each 
item should contain the same content  dimensions as every other item, albeit in different proportions, 
the usual example being word problems which require a mix of reading and math ability.  This is 
called “within-item multidimensionality”.  “Between-item multidimensionality”, where items are 
sensitive to content dimensions not  shared by the other items, violate the common space requirement.  
Random error (noise) is a relatively benign violation of the common space requirement, depending on 
the extent of noise.  The purpose of analysis of fit in the context of NOUS is to identify items that  do 
participate in the common space.

6. Linear structure.  All data that  can be conceptualized as the dot product of two vectors whose 
components (dimensions) are linearly independent  is in theory analyzable by NOUS.  Many, many 
functions can be formulated in this way, but  not  all.  An important  counter-example is distances.  The 
formula for the distance between two points does not fall cleanly into a linear structure, and as a 
consequence NOUS cannot replicate a distance matrix perfectly (unless special conditions are applied 
to R and C in each iteration).  Thus, NOUS can be conceived as a test of linear structure.
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2.5  SCALABILITY

An important  property of alternating least squares is that its piece-meal approach to matrix 
decomposition opens the door to massively parallel distributed data processing. 

1. Analysis by slice.  Instead of having to load the entire data array into memory in order to process 
it, ALS requires only one row or column’s worth of data at a time, plus the coordinates that  are 
associated with it.  If even that  slice of data is too large, it  can easily be sampled.  This makes it 
possible to analyze unlimited data with a fixed amount of memory.

2. Ignores missing.  Because missing cells are simply ignored, they do not  enter into the calculation 
at  all and do not need to be stored.  As datasets become very large, they tend to have larger 
proportions of missing cells, which translates into computational savings for ALS.

3.  Parallelism.  ALS does not  require that its row and column entities be analyzed in any particular 
order.  Therefore, given thread-safe input/output  access to the coordinate arrays, it is in theory 
possible (given enough processors) to compute least squares solutions for all entities at the same time.

4. New data.  Once coordinates have been calculated for all entities, they can be stored in a bank and 
reused when new data is added to the system.  That  means there is no need to recalibrate the system 
when new data is introduced.  Only the coordinates for the new entity are calculated.

While the Damon package does not  as yet exploit  the parallelism property, there are other projects 
that do.  An example is the ALS algorithm implemented on the Mahout/Hadoop machine learning 
platform described by Sean Owen (2012) which is based on a recommender system described by Hu, 
Koren, and Volinsky (2008).  Its scalability suggests that  ALS has an important  role to play in the analysis 
of big data.

3 .0  PROPERTIES OF NOUS STATISTICS

While it is beyond the scope of this paper to provide formal mathematical proofs of claims regarding 
NOUS, it  can offer empirical demonstrations.  These demonstrations are intended to show how NOUS 
succeeds in meeting the specifications laid out for an object-oriented multidimensional model in section 
1.4.  We begin with the claim that NOUS converges on a solution.

3.1  CONVERGENCE

In ALS, the quantity that is minimized is the Euclidean distance S between the model’s estimates and 
the corresponding observed data (where present).  S is their root mean squared residual.  The intuition is 
that during the iteration between R and C, each new set  of coordinates will yield a closer fit  to the 
observations than the iteration before, inasmuch as it is a least  squares solution (the smallest  possible 
distance S given the data and the previous R or C).  

Figure 3.1 shows that  convergence to a plateau happens fairly rapidly, even at 10 dimensions with 
high “noise” (random numbers added to the data) and missing data.  The data matrix was 100 x 80.
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3.2  MULTIDIMENSIONALITY

There is no theoretical limit on the number of dimensions that can be analyzed for a given dataset, 
only practical limitations posed by the size of the dataset  needed to accommodate a large number of 
dimensions and the computing load involved with high-dimensional solutions.

Figure 3.2 compares estimates calculated from a 1000 x 1000 data array built to be 100-dimensional 
with model “true” values.  60% of the cells are missing.  No noise was added.  The chart  shows that in the 
absence of noise NOUS exactly predicts the values of the “true” model for missing and  non-missing cells.  
Number of dimensions is not an obstacle to building the correct model for a given dataset.

Fig. 3.1
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3.3  OBJECTIVE DIMENSIONALITY

It  is claimed that  the dimensionality that yields the highest objectivity statistic (combining Accuracy 
and Stability) is, in general, the objective dimensionality of a dataset, i.e., the dimensionality that best 
predicts the “true” values.  This is not a trivial claim, and requires proof on two fronts:  a) proof that the 
dimensionality that  best predicts pseudo-missing cells (Accuracy) is also the dimensionality that best 
predicts the “true” values; and b) proof that the dimensionality that produces the most  stable coordinate 
structure (Stability) is also the dimensionality that  best  predicts the “true” values, and therefore that 
Accuracy and Stability agree in the objective dimension they imply.  

Though the proofs are complicated, the intuition is simple enough.  Ability to predict missing 
observations, aside from having intrinsic value, certainly seems like a reasonable proxy for predicting 
“true” values.  And the same can be said for ability to set up a stable coordinate structure.  However, there 
is more to it than that.  A little reflection suggests that the Accuracy and Stability statistics are likely to 
behave somewhat differently.

We expect the model to do poorly predicting missing cells at  lower than the objective dimension, but 
perhaps not  all that  badly above.  Accuracy should grow quickly and plateau at  the objective dimension.  
For stability, we expect  the reverse.  We expect the coordinate structure to be fairly stable at  less than the 
objective dimension but to degrade above the objective dimension as the extra dimensions are used to 
model noise.  Therefore, objectivity, which is a combination of stability and accuracy, should be a 
mountain-shaped curve with a noticeable peak at the objective dimensionality.  

Fig 3.2
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And that  is what we find.  Figure 3.3a shows the result  of analyzing a dataset  that was constructed to 
be 18-dimensional, to which noise was added.  The NOUS objectivity curve peaks at 18 dimensions.

In this case, to determine the objective dimensionality, NOUS calculated objectivity for every 
dimensionality from 1 to 30 -- computationally expensive.  However, the fact  that  the objectivity curve 
has a well-defined peak suggests that  it  can be found more efficiently.  Figure 3.3 b employs a binary 
search routine to home in on the objective dimensionality.  The range is defined (30) and a baseline is 
calculated for dimension 1.  A dimensionality is chosen in the middle of the range (15), and objectivity is 
calculated both for dimensionality 15 and dimensionality 16.  If their slope is positive, a new midpoint is 
chosen between 15 and 30; if negative a midpoint  is chosen between 1 and 15.  A new pair of objectivity 
statistics is calculated and their slope calculated.  In this way, it  is possible to “scale the objectivity 
mountain” in an efficient manner.

Fig. 3.3 a
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Instead of doing 30 complete NOUS runs (including the extra runs needed to estimate objectivity), we  
have located the objective dimensionality in 9.  However, it  is important  to note that  the objectivity curve 
is itself subject  to error and there is no guarantee that all slopes to the left  of the objective dimension will 
be positive or that  all slopes to the right will be negative, in which case it  is possible for the “Search” 
method to become stuck in local minima.

In addition, there is a point at  which, as noise is added, the peak of the objectivity curve begins to 
shift  to the left.  At the extreme, where the noise is so great that  it  overwhelms the structure, the peak 
shifts all the way to 1.  The dataset is essentially a matrix of random numbers.

3.4  “TRUE” ESTIMATES, PREDICTIONS OF MISSING CELLS

Conceptually, the “true” value of a given cell is the average of independent  observations of that  cell 
as N goes to infinity.  For purposes of simulation in NOUS, the “true” or model value of a cell is the dot 
product  of a randomly generated row vector and column vector.  The full model array T is the (outer) 
product  of randomly generated R and C  matrices, whose rank determines the objective dimensionality 
D[objective] of the dataset.  Data matrix X is simulated by adding random numbers whose average is zero 
(noise) to T and making some cells missing.

The intuitive basis of the claim that estimates matrix E approximates T, the “true” values, is that  data 
array X can be assumed to be orthogonal to T.  That is because adding random numbers whose average is 
zero to T creates X in such a way that:  a) X ≠ T , and b) X is not biased in one direction or another away 
from T, and is thus perpendicular to T.  When NOUS computes estimates E from X, it  can be shown that 

Fig. 3.3 b
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E is the orthogonal projection of X into the D[objective] subspace, which is the same subspace as T.        
Because X is orthogonal to T, and E is the orthogonal projection of X back into the T subspace, E will 
approximate T.  In other words, computing E essentially reverses the process of adding noise to T.  This, 
more or less, is why NOUS estimates approximate the true values.  You can also see from this argument 
why it is so important that E be computed using the same dimensionality as T.  Otherwise, it projects X 
into the wrong space.

As more noise is added to T in creating X, the farther apart the two matrices become.  As X is 
increasingly buffeted by individual large errors, it  is more likely to be accidentally thrown off its 
perpendicular to T, which in turn will disturb E, the projection of X back into the T subspace.  This, 
among other reasons, is why the addition of noise can be expected to progressively degrade the accuracy 
of E.

Figure 3.4 shows the degradation that occurs in the correlation between the NOUS estimates and the 
“true” values as noise is added.  It also shows the effect  of missing data on the rate of degradation.  The 
correlations are computed using the whole array of estimates, including those for missing cells.

Broadly speaking, Figure 3.4 demonstrates that  NOUS meets two essential specifications of an 
object-oriented multidimensional model:

1. “True” estimates.  To the degree that the data fit the model, i.e., the noise is zero, the NOUS 
estimate for each cell matches the “true” model value.

Fig. 3.4
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2. Predicts missing data.  To the degree that the data fit  the model, the NOUS prediction for each 
missing cell matches the “true” value.  This is evident in the graph by the fact  that  when noise = 0.0, 
the correlation between the model values and the estimates is 1.0, even when 80% of the data are 
missing.

We also see that as noise is added to T and the model violated, the NOUS estimates degrade as 
expected.  The noise values on the x-axis represent  the range of random values above and below a given 
model value.  Thus, we can expect  that when the noise is 2.0, i.e., when the observed value is within plus 
or minus 2 of the true value, the correlation we can expect is in the neighborhood of 0.90.  Since, the 
range of data values is 9.0, the variation around each data value when noise = 2.0 represents almost  50% 
of the whole data range.  That is quite a lot of error.  As the noise increases to 4.0 and 5.0, the amount  of 
variation around each data value takes up the entire data range and the accuracy of the estimates degrades 
rapidly.

We also note several oddities.  First, of course, is that one of the curves (this is actually the 80% 
missing curve, though it’s not  clear in the legend) jumps around quite a bit when the noise exceeds 6.0.  
The causes for this are not  known, but it  is apparent  that  the degree of noise has surpassed what a linear 
system of equations consisting of, on average, 40 observations and 10 unknowns (dimensions) is able to 
handle.  There are definite boundary conditions in the handling of noise and missing data, and in this case 
it appears we may have exceeded them.

Of equal interest is that, contrary to expectation, the curve with 0% missing data actually degrades the 
fastest to the right  of the 2.0 noise threshold.  When noise is less than 2.0 the percentage of missing data 
increases the rate of degradation, as one would expect.  But  to the right of the threshold, the percentage of 
missing data actually decreases the rate of degradation.  This phenomenon is not yet understood.

Rate of degradation is also affected by the size of the dataset and the number of dimensions.  The 
larger the dataset and the smaller the number of dimensions, the slower the rate of degradation, though 
that is not shown here.

3.5 PERSON, ITEM INVARIANCE (STABILITY)

The Rasch model property of item and person invariance is operationalized in NOUS as “coordinate 
stability.”  It  is the correlation between person coordinates R calculated using two different  samples of 
items.  In principle, stability would capture all variation in R associated with the use of all possible 
subsamples of C, but this is impractical and appears to be unnecessary.

Figure 3.5 tracks the stability/invariance of the coordinate system with different levels of noise and 
missing data.
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Like Figure 3.4, Figure 3.5 demonstrates that NOUS meets an essential specification of an object-
oriented multidimensional model:  To the degree that the data fit  the model, i.e., the noise is zero, the 
person and item coordinates should be invariant.  In this case, we see that  Stability = 1.0 when noise = 
0.0, which supports the claim.  While the y-axis is technically only assessing row (person) stability, the 
demonstration is easily generalized to column (item) stability.

We see the same oddities as in Figure 3.4.  We see that one of the curves (the 80% missing curve) 
degrades much faster than the others, reiterating the point  that  for this dataset, dimensionality, and amount 
of missing data, we appear to have exceeded some mathematical boundary condition.  We also see, as 
before, that the curves with the least  missing data in general degrade faster than the others.  Again, this is 
a mystery.

3.6 MISFIT, INFLUENCE, INFORMATION, PORTABILITY, SUFFICIENCY

Misfit.  Figures 3.4 and 3.5 suffice to demonstrate that, to the degree the data in general fit the model 
at  the “objective” dimensionality, when a cell observation is “wrong” (i.e., does not match the “true” 
value for that  cell), it will differ from the estimate accordingly.  In other words, it  will misfit.  This 
follows from the property that NOUS estimates approximate model values under these conditions.  This 
important  property makes it  possible to identify cells, persons, and items that do not  fit in the common 
objective space of the model, and to remove them for purposes of calibrating the items.  In other words, it 
provides a mechanism for forcing a common space, so that the dataset meets the conditions necessary to 
maximize objectivity.

Fig. 3.5
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Influence.  Influence is closely related to misfit, its opposite in fact.  It is the influence that the 
observation in a given cell has on its corresponding estimate.  It  shows up as the tendency of estimates to 
be artificially close to their observations, also known as overfit, which will also cause their standard errors 
to be artificially small.  Two factors cause high influence:  a) too many dimensions; b) too little data.  For 
a dataset with the correct dimensionality, influence begins to appear when there are fewer than around 80 
rows and columns or so.  To correct  the rosy (and non-objective) picture cased by influence, and in 
general to free estimates from the effects of their observations, NOUS contains a procedure for ignoring a 
given column I while calculating R, then anchoring R and calculating coordinates and estimates for I.  
Because R is not influenced by I, the influence of each observation in  I on its corresponding estimate is 
minimized.  This is augmented by a procedure for subtracting out the effect of individual observations on  
least squares solutions.

Information.  The Rasch model can be used to generate multidimensional measures so long as it is 
possible to classify items by the construct they embody and do separate analyses for each construct.  One 
drawback of this procedure is that it wastes information, inasmuch as constructs will often have 
significant correlations with each other, even if they contain orthogonally distinct elements.  NOUS uses 
all the data in a dataset to compute R and C  and enjoys the benefits of least  squares solutions (and 
indirectly, maximum likelihood solutions), regardless of how its entities are oriented in space, and to that 
extent makes maximal use of information.

Portability.  The item invariance property as measured by the stability statistic makes it possible to 
compute C  from one section of the data and apply it to another section.  This extends to outside datasets 
as well.  Coordinates are calculated for Items I - K using data collected in one dataset, then applied as 
anchors to another dataset that  also contains Items I - K, or some subset thereof, so long as the number of 
items is sufficient  given the dimensionality to compute a valid solution.  Similar portability exists for 
person coordinates.

Sufficiency.  The coordinate vectors in R and C, taken together as a complete system, are “sufficient 
statistics” in the sense that no other statistic which can be calculated from the same sample provides any 
additional information as to the values of those coordinates.  (Wikipedia, Sufficient Statistic, May 14, 
2012).  However, it is important  to bear in mind that  R and C  are arbitrary for a given space -- the choice 
of origin point is arbitrary, as is the orientation of the axes.  Consistency across spaces is maintained only 
by forcing all vectors to participate in the same coordinate system through item or person “anchoring”.

In addition, as mentioned in section 2.1, NOUS (optionally) converts R into its orthonormal 
equivalent  at  each iteration.  This has two immediate effects:  a) it  makes each column (dimension) of R 
orthogonal to every other column, like Cartesian coordinates; b) it  normalizes each column in R to have 
unit length (their root sums of squares equal 1.0).  Because each column has a length of 1, it can be shown 
algebraically that each coordinate in C equals the sum of squares of its corresponding contribution to the 
estimates in its column, and that  the length of each vector in C  bears a close relationship with the standard 
deviation of the estimates in its column.  Given these vector lengths, the cosine of the angle between any 
two vectors in C  can be used to estimate the correlation of the estimates in their columns.  C  becomes, in 
this case, “sufficient” in the additional, practical sense of being able to describe on its own, without 
reference to R or E, some of the essential statistical attributes of its column of data, somewhat analogous 
to the way a Rasch measure is able to stand in for a raw score.  The full meaning and implications of this 
property have yet to be explored.

3.7  STANDARD ERRORS

Equation 17 gives the NOUS formula for standard error (SE).  In this context, standard error is 
conceptualized as the expected discrepancy between the “true” model value for each cell and the 
corresponding estimate.  It is distinguished from the expected absolute residual (EAR), which is 
conceptualized as the expected discrepancy between the observed value for each cell and the 
corresponding estimate.  The latter is relatively easy to calculate because the observed values are 
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accessible.  The standard error is more elusive, as it  concerns the relationship between the estimate and an 
unknown and hypothetical quantity -- the “true” value for each cell.

Figure 3.7 compares the root  mean squared residual between the estimates and the “true” model 
values for each column with the corresponding root mean squared standard errors for those columns, 
where the formula for computing each cell standard error is given by Equation 17.

Figure 3.7 shows that Equation 17 works reasonably well.  Though the relationship is somewhat  non-
linear close to zero, the estimated SE has a strong positive relationship with the “actual” standard error, 
and is in the correct range.

3.8  SIZE OF DATASET

Ability to scale down to small datasets is an important objective of multidimensional object-oriented 
models, not  only because many datasets are small but also because a model cannot  be considered object-
oriented if it  relies on representative person (or item) samples to be accurate or on large samples to be 
numerically stable.  In NOUS, objects are persons, items, and other entities that  interact to produce data.  
They are not populations or samples.

Fig. 3.7
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Figure 3.8 shows the rate of degradation in the correlation between “true” model values and NOUS 
estimates as noise is added for four differently sized datasets.

We see, as expected, that the smaller the dataset, the more quickly it degrades with the addition of 
noise.  What  is interesting is that  the estimates from smallest  dataset, 25 rows by 25 columns, are not 
terribly different from the true values (0.60) when the noise added is plus or minus 2.0, or approximately 
40% of the range of the data values.  This is with a 10-dimensional dataset.  While it  is clear that datasets 
should ideally have hundreds of entities or more, this chart  demonstrates that NOUS can be effective with 
small datasets, even when the dimensionality is relatively high.

3.9  DICHOTOMOUS DATA, NONNEGATIVE COORDINATES

In the world of probabilistic IRT models, the emphasis is on models that  handle dichotomous or 
polytomous data, and the generalization to continuous interval data is awkward.  In the world of ALS and 
NOUS, it  is the other way around.  To meet  its homoscedasticity of errors requirement, linear least 
squares assumes interval data.  This raises the important question, to what  degree can NOUS, which 
depends on ALS, be generalized to dichotomous data?

Fig. 3.8
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While this is a complicated question and outside the scope of this paper, the short answer is “to an 
acceptable degree”, but the results need to be interpreted somewhat differently than for interval data.

First, however, we need to be clear on what  is meant by “nonnegative coordinates”.  The Rasch 
model, as an example, requires positive coordinates.  It  assumes that person abilities and item difficulties 
can be expressed in terms of probabilities, which are positive (or “nonnegative” to use the linear algebra 
term), and this corresponds to datasets where the items are all positively correlated.  Sometimes an item 
has a strong negative correlation with the other items.  This suggests that  it  can be modeled only as a 
negative probability (a negative coordinate), which is not allowed in Rasch, so such items are either 
rejected or reverse-coded.

The key point, here, is that  the sign of a coordinate value is to some extent  a property of the item 
itself, not of the analysis technique applied to it.  A simulated dataset built  from all positive coordinates 
(nonnegative) behaves differently from a dataset  built  with a mix of positive and negative coordinates.  
Such coordinates I call “generating coordinates” as they are used to generate a dataset.  In real life, the 
“generating coordinates” are not known -- they are the result of unseen natural forces that  can only be 
inferred.  The coordinates calculated by NOUS to estimate a data matrix (“estimating coordinates”) may 
be (in fact always are) quite different  from the generating coordinates employed to create the data, with 
the sole exception of their rank or dimensionality, which must be discovered and is here termed the 
“objective dimensionality”.  Ordinarily, the fact  that  the estimating coordinates are different from the 
generating coordinates is not a problem.  One coordinate system is as good as another (for the most part).  
However, issues can arise when the proportion of negatives in the generating coordinates differs from 
their proportion in the estimating coordinates, which is what gave rise to the methodology known as 
nonnegative matrix factorization (NMF, see Lee & Seung, 1999).

For the most  part, NOUS performs well with data created with nonnegative generating coordinates.  
The main exception is dichotomous data applied at a low dimensionality, such as one dimension.  Figure 
3.9a shows what happens when NOUS is run with a dimensionality of one on 1-dimensional, 
dichotomous,  nonnegative data.  No noise was added to the data aside from the (heteroscedastic) noise 
that naturally results from converting continuous values to dichotomous.
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NOUS does a poor job of capturing the “true” continuous values, disturbed particularly by a hook 
phenomenon at  the lower end of the scale.  This is due to the presence of negative coordinates in R and C 
calculated for a dataset that was built using only positive coordinates.

As Figure 3.9b shows, the same dataset run through Rasch is much better behaved.

Figure 3.9a
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The Rasch estimates, being probabilities, exhibit a classic ogival relationship to the “true” model 
values.  Thus, in a very real sense, the Rasch model is not just  a special case of the model used by NOUS.  
It is a totally distinct model, applicable to datasets that are problematic for NOUS.

However, NOUS offers the option of applying special conditions to R and C  in each alternating least 
squares iteration.  Figure 3.9c shows what happens when R and C are constrained to be nonnegative.

Fig. 3.9b
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Constraining NOUS to nonnegative coordinates makes all the difference.  The resulting estimates 
have a strong linear relationship with the “true” model values, on par with Rasch. 

Unfortunately, this approach requires insight  by the analyst  to invoke it  at the appropriate time.  Many 
applications require a more automated approach.  In Figure 3.9a, NOUS was constrained to be 1-
dimensional on theoretical grounds.  Would NOUS find this dataset to be 1-dimensional if allowed to 
apply its objectivity criteria in the search for the optimal dimensionality?  Figure 3.9e shows that the 
answer is no.

Figure 3.9d
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When left  to its own devices, NOUS finds that  a 6-dimensional solution maximizes the objectivity of 
the estimates.  Yet the dataset was created using one dimension.  What happened to the extra five 
dimensions?  The answer is that NOUS has used them to model the tails with a complicated wave 
function.  Another way to put it is that  NOUS is trying to model the 0’s and 1’s as closely as possible, 
accepting them as a valid metric.  Given enough dimensions, NOUS would convert  the tails into 
(approximately) straight horizontal lines.  It doesn’t  go past  6 dimensions, however, because this entails 
an unacceptable degradation in the objectivity statistic, driven primarily by its stability component.

Where does this leave us?  As a metric representation of the the true values, the 6-dimensional 
solution is poor.  As a set  of dichotomous predictions, however, it is excellent.  Because the y-axis is in a 
logit metric (the result  of pre-standardization), every value above 0.00 represents a probability greater 
than 0.50, every value below a probability less than 0.50.  Converting estimates to 0 and 1, we find that 
the 6-dimensional solution almost perfectly predicts the true dichotomous values.

Had the generating coordinates been an even mix of positive and negative, instead of all nonnegative, 
the story would be somewhat  different.  In the absence of noise, NOUS computes very accurate 
dichotomous predictions with few estimates around the 0.0 mark.  Its main difference relative the 
nonnegative case, however, is that NOUS finds this solution at  dimensionality 1 instead of dimensionality 
6.

This allows us to state some general rules:

Fig. 3.9e
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1. NOUS should be specified at  the dimensionality that  is found to produce the highest objectivity 
statistic (subject  to analytic review), even (as in the case of nonnegative dichotomous data) when the 
dataset is known to be unidimensional.

2. When the data are interval, NOUS estimates for each column have linear metric properties; they 
are measures.

3. When the data are not interval but dichotomous or (to a lesser extent) polytomous, NOUS 
estimates for each column are not  measures but predictions.  They can be used to predict responses.  
To obtain measures in the dichotomous case, it  is necessary to average or otherwise combine 
estimates across multiple columns to build a continuous construct with metric properties.

CONCLUSION

NOUS meets the specifications proposed for a true object-oriented multidimensional model.  It 
handles highly multidimensional data, its estimates approximate “true” values, it  is highly robust to 
missing data, and it  predicts missing cells.  It achieves these goals by combining the algorithmic 
properties of Alternating Least Squares with a set of objectivity criteria derived in part  from the Rasch 
model.  Among these criteria are that each analysis should be conducted at  the “objective” dimensionality,  
an intrinsic property of the dataset.  The “objective” dimensionality is discovered empirically by assessing 
the stability of the coordinate structure and the model’s accuracy in predicting pseudo-missing cells for 
each of a set of possible dimensionalities, the objectivity curve tending to have a well-defined peak.

It  is worth pausing to consider the overall goals of the model.  Many machine-learning and data-
mining methods deploy similar matrix factorization techniques, and better ones, but their goal seems to be 
to exploit patterns in the data to make useful predictions, not necessarily isolate new laws.  The approach 
is somewhat  analogous to that  of Ptolemy and Copernicus who explained celestial phenomena by 
introducing new epicycles, new parameters, as needed.  The goal of NOUS is more in line with that of 
Newton, to isolate laws, even at the expense of fit  to the data.  Inasmuch as laws are invariant 
relationships between two or more variables and NOUS selects item and person coordinates specifically 
to maximize their invariance across samples and their ability to predict unknowns, NOUS represents a 
step in the direction of using mathematical methods not merely to describe the real world but  to discover 
its most stable underlying laws.
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