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ABSTRACT 

Test administrators sometimes ask for student performance on test subscales having few items, 
rendering them unreliable and hard to equate.  Worse, subscales sometimes embody orthogonally 
distinct secondary dimensions as well.  Traditional Rasch analysis offers reasonable solutions in some 
cases, but not all, and is not a general solution.  This paper proposes a general solution using a Rasch-
derived non-unidimensional scaling measurement model, called NOUS, which transfers information 
across items, subscales, and dimensions.  Drawing examples from a recent state exam, it shows that 
NOUS yields measures for short subscales that are comparable to unidimensional measures 
computed using long forms of the same subscale.  It concludes by discussing applications for 
multidimensional equating, student-level diagnostics, and measurement of performance on open-
ended items. 
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THE PROBLEM 

 Test administrators sometimes want to report student performance on test subscales for which 
there may be only a few items.  In such cases, subscale measures become unreliable due to high error, 
and hard to equate to other forms and administrations due to a lack of common items within the 
subscale.  Worse, they sometimes embody dimensions slightly or substantially at odds with the 
dominant dimension of the test.  Traditional Rasch analysis offers reasonable solutions in some 
cases, but not all, and cannot be viewed as a general solution for the following reasons: 

1. The Rasch Model specifies that items embody a single dimension.  To the degree 
subscales embody dimensions that are poorly correlated to the dominant dimension of 
the test, the model loses its capacity to predict and measure subscale performance.  At 
the same time, the dominant dimension of the test becomes increasingly tenuous and 
hard to define, and analysis of fit becomes problematic. 

2. When Rasch is focused on a short subscale, the low number of items increases error and 
decreases reliability, which is a function of the ratio between the standard deviation of 
the examinees and their root mean square error (RMSE).  The RMSE is driven by the 
number of items in the subscale. 

3. Items can be equated across administrations only to the degree they participate in the 
same dimension.  When there are only a few items in a subscale and the subscale is on a 
separate dimension, it becomes impossible to compare performance on that subscale 
across administrations. 

4. When subscale measures are computed separately, they do not share the same logit 
metric, leading to problems with comparability.  

Multidimensional Rasch models, such as that embodied in the “between-item” multidimensionality 
component of the ConQuest program (Wu, Adams, Wilson, 1998), were not designed for this type of 
problem.  Their purpose is primarily to disentangle the dimensions in a dataset, not to transfer 
information across dimensions, although ConQuest EAP measures do exploit distributional 
information that has the effect of transferring information.  There may be other variants of 
multidimensional IRT Models that explicitly transfer information across dimensions, such as 
Reckase’s Linear Logistic Multidimensional Model (Reckase, 1997), but I have not had the 
opportunity to study them operationally. 

Outside the field of IRT, this type of problem is addressed through multivariate regression models 
and perhaps most powerfully through neural networks (Bishop, 1995), an advanced form of 
regression.  Such methods have not, so far as I know, been adapted to educational testing, though 
they might work well enough.  As they were not developed according to any explicit specification for 
“objective measurement,” neural networks are strongly dependent on representative samples and 
have a tendency to produce predictions that describe an initial “training” data set very well, but fail to 
generalize. 

We are thus led to speculate on the possibility of an IRT model that combines the “objectivity” 
requirements of the unidimensional Rasch model with the multidimensional predictive powers of 
regression and neural networks.  Such an IRT model should possess the following properties: 
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1. Non-unidimensional.  The model should be capable of modeling persons and items in a 
space of any number of dimensions in such a way that each item is allowed to define its 
own unique dimension. 

2. Information Transfer.  In estimating how each person does on a given item or subscale, 
the model should be able to use all information in the data matrix that has some bearing 
on that item or subscale and to increase the reliability of the corresponding measures 
accordingly. 

3. Specific Objectivity.  The model should define an objective space of n-dimensions in 
which the relative positions of the persons and items are mutually independent, i.e., 
separable.  Thus, the relative positions of the persons should not be affected by the item 
sample, and the relative positions of the items should not be affected by the person 
sample, as a condition of fit between the observed and estimated values. 

4. Missing Data.  The model should be robust to missing data and possess no theoretical 
need for complete data sets.  This contrasts with conventional statistical methods, 
including regression and neural networks.  The ability to handle missing data is essential 
to IRT, not just for the practical reason that data are often missing, but because equating 
designs (the raison d’etre of IRT) necessarily involve significant blocks of missing data. 

5. Bad Data.  The model should clearly identify data values that are not likely to meet the 
conditions for reproducibility.  For instance, if we were deliberately to reverse one of the 
data values so that we know on a priori grounds that it is wrong, the model should not 
try to adapt itself to the new value.  It should yield a clear and significant difference 
between the reversed value and the model’s own estimate for that cell. 

6. Random Data.  The model should, so far as possible, be robust to the effects of 
randomness in making its predictions and measurements, yet be able to tell the 
researcher the degree to which the data truly are random. 

Although the model discussed in this paper possesses all six of these properties, I shall only discuss it 
as it relates to the second property, Information Transfer.  In particular, I will apply the model to a 
test containing a mix of math and language items in which the language items are treated as a 
subscale.  I will assess how well the model can be used to recover “benchmark” language measures 
when the number of items in the language subscale is very small. 

 

THE METHOD 

 This paper proposes a general solution in the form of a non-unidimensional scaling  
measurement model (to coin a phrase) called NOUS, whose distinguishing feature is that it transfers 
information across items, subscales, and dimensions, even when they are poorly or negatively 
correlated.  It does this by means of an algorithm that computes correlations between item vectors 
and person-pair vectors computed from the test as a whole.  While the algorithm itself is 
unrecognizable in terms of existing multidimensional algorithms, it reduces to a Rasch-like statement 
of the performance of each response being a function of a person’s ability and an item’s difficulty in 
the dimension implied by that item.   
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The NOUS model can be summarized as: 

 ιιι ε ninni DBG +−=  Eq. 1 

The performance Gni of Person n on Item i is defined in terms of Person n’s ability on the iota 
dimension minus Item i’s difficulty on the same dimension plus some normally distributed error, 
where the iota dimension is defined by the spatial orientation of Item i.  For simplicity’s sake, I will 
refer to the iota dimension using the “i” subscript, since the item and the dimension that the item 
embodies are, for practical purposes, interchangeable.  Also, I refer to persons as “rows” and items 
as “columns” in accord with general practice. 

So far, Eq. 1 is consistent with the Rasch model with the exception of the iota subscript and its not 
being framed as a probability equation.  The decision not to frame NOUS as a probability equation is 
pragmatic; the algorithm is simpler and quicker.  Nonetheless, probabilities are easily calculated from 
NOUS estimates. 

NOUS differs mainly in the way it defines and computes the ability and difficulty parameters. 

 ( )∑ −∗−=
R

M
ini NMEB 1  Eq. 2 

 ( )∑ ∗∗−=
R

M
MNini MNB θcos1  Eq. 3 

The ability Bni (I reserve ? for use with angles) of Person n is defined as the estimated (E) sum of 
differences within a column across R person-rows between a given person N on item i (representing 
the iota dimension) and all other persons M on the same iota dimension.  Be sure to note that this 
summation occurs within the column of item i, not across columns (the i subscript can be misleading).  
In order to estimate each of the differences in Eq. 2, we employ the definition of the cosine which 
states that the difference between two points on a given dimension equals the product of the 
absolute distance between them (MN) and the cosine of their angle with the given dimension 
(cos?MNi).  The angle in question is not between two items, as one usually sees, but between one item 
and the line defined by a pair of persons.  Almost the entire bulk of the NOUS algorithm is 
concerned with estimating these distances and cosines. 

The difficulty of Item i can be expressed more conventionally: 

 ( )∑∗−=
R

M
ii MXD 1ι  Eq. 4 

The difficulty Di? of Item i along its implied iota dimension is the negative sum of the observed 
values X(Mi) in the Item i column of M persons, where R is the number of persons with non-empty 
cells in that column.  Eq. 4 is unimpressive from a measurement perspective, but since each item is 
treated as its own dimension, item difficulties lose much of their meaning relative to each other.  Eq. 
4 is more than adequate as a way of anchoring the ability distribution for prediction purposes.  

The result is an estimate of person performance with standard error for each person/item 
interaction, corresponding to the expected values matrix in IRT programs.  The NOUS estimates are 
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readily converted into linear measures for each item or item subscale.  Because they draw information 
from the full data matrix, they are notably more precise and reliable than could be obtained from a 
unidimensional analysis of the same subscale.  They are also comparable across items and subscales. 

The essential innovation is that we have wholly dispensed with the specification that items share a 
common dimension. 

THE GEOMETRY 

NOUS constructs a simple geometrical picture.  Persons are visualized as points floating around in 
space.  Items are directions visualized as lines pointing in any direction, with demarcation points like 
a yardstick.  Data are where each person projects perpendicularly onto each line.  Figure 1 shows the 
unidimensional dichotomous case. 

Figure 1:  The Unidimensional Case 

 

The bold vertical line represents the dominant dimension of the test.  Each item is a line (direction, 
actually, also known as a vector), infinitely extended in both directions and more or less parallel to 
the dominant dimension, where the location of the label (numbers in the case of items) shows the 
“difficulty” of that item, i.e. the position below which a person gets a “0” and above which he gets a 
“1”.  Each person (indicated by the alpha labels) is a point floating in space of higher dimensionality 
than the dominant dimension of the test.  Each data value is where a person-point projects onto an 
item-line, a “1” if he falls “above” the item label (on the side with the arrow), a “0” if he falls 
“below.”  For example, in the dichotomous case, we would say that Person B gets a “1” on Item 3 
because he projects onto the region above the Item 3 label.  Person A gets a “0” on Item 2 and a “1” 
on all the other items.  And so on. 

Figure 2 gives the 2-dimensional case (since the diagram is restricted to the plane of the paper), in 
which the unidimensionality specification has been relaxed.  We now see that the items are pointing 
anywhere within the plane.  Data are modeled the same way as in the unidimensional case.  For 
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instance, we see that Person B gets a “0” on Item 4, even though it is “higher” up the bold 
dimension of the test (which is no longer dominant, it should be noted).  If any of the items were to 
point outside of the plane of the sheet of paper, we would have the 3-dimensional case.  In the 
general case we allow the lines to point in any direction in a space of any number of dimensions 
(though it cannot exceed the number of items), and we imagine the persons as points floating around 
in that space. 

In analyzing data from Figure 2, one can easily see where a unidimensional model will run into 
trouble.  The unidimensional model will pick the “average” orientation of the items as its dominant 
dimension, and all the items that are not aligned to that dimension (almost all items) will misfit 
accordingly.  If there are a significant number of “reversed” items like Item 4, the person and item 
measures will tend to collapse to the center of the scale since there is no dominant dimension. 

Figure 2:  The 2-Dimensional Case 

 

NOUS uses a combination of statistical methods and projective geometry to analyze data assumed to 
originate from a space of some unknown number of dimensions.  There is no theoretical or practical 
limit to the number of dimensions it can analyze at a time (the computational time is the same), 
although the reliability of estimates decreases the lower the ratio of items to orthogonal dimensions. 

These figures are formalized in the following definitions: 

1. A “person” is a point in n-dimensional space, and can be thought of as a vector.  Each point 
occupies one and only position in that space. 

2. An “item” is a direction or vector in n-dimensional space, infinite in extent, embodied as any 
of the set of lines parallel to that direction and displaced orthogonally relative to it.  For ease 
of reference, such directions are often called “lines.”  Each direction/line possesses 
boundaries demarcating equally spaced sections on the line, and these boundaries are 
indicative of “difficulty” along the dimension embodied by that direction/line.  Each line 
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has one and only one orientation in that space and each of its boundary points occurs at one 
and only one location on that line. 

3. A “datum” is the locus of projection of a point onto a line, in which the projection line is the 
perpendicular dropped from the point to the line and the locus of the projection is given by 
the value assigned to that region of the item-line.  Each projection receives one and only 
one such valuation. 

4. “N-dimensional space” is that medium by which points differ from each other on items.  
The number “N” is the minimum number of orthogonal dimensions needed to account for 
the variance of the projections of all the points on all the item-lines for a given data set.  
That space is called “objective” whose persons retain constant relative positions across 
items samples and whose items retain constant relative orientations and difficulties across 
person samples. 

THE ESTIMATION ALGORITHM 

Since the specification of the non-unidimensional model in 1996 (Moulton, 1996), at least three 
markedly different algorithms have been discovered for estimating the item-specific difficulty and 
ability parameters used to estimate each person/item interaction in the n-dimensional case.  They can 
be grouped under two headings:  Numeric Methods and Deterministic Methods.   

The Numeric Method, in the tradition of the Newton-Raphson method used in many maximum 
likelihood routines, establishes a coordinate system of some specified number D dimensions to 
describe the person/item space.  Within that space, it assigns starting positions to each person-point, 
and starting orientations (suitably normalized around the origin) to each item-line, and computes 
projection estimates for each point onto each line.  These estimates are compared to the actual data 
values and fit statistics are computed.  Each person-point is then moved through the D-dimensional 
space until a position is found that maximizes the fit of the projections to the data.  Similarly, each 
item-line is moved (in an angular sense) through space until a best-fit orientation is found.  The 
process is repeated until a global best-fit solution is found (Silsdorf, 2001).  All Numeric methods are 
iterative trial-and-error routines that maximize fit to a model, though they are capable of great 
refinement using tools from linear algebra. 

A Deterministic Method attempts to solve the parameter estimation problem mathematically and 
does not include an iterative routine to maximize fit.  It asks:  What is the mathematical function that 
relates the value in one cell to the values in the remaining cells of the matrix?  This function is used 
to estimate each cell directly.  There is no trial-and-error adjustment of parameters to maximize fit. 

The algorithm used in this paper is a variant of the Deterministic algorithm worked out in 1996.  
This variant, which refines the initial distance estimates, turns out to describe significantly more 
variance than the 1996 version when it comes to analyzing dichotomous test data (ordinarily the two 
versions are not so different).  The refined version has not yet been posted on the web, but it can be 
requested of the author.  Both deterministic versions are astonishingly complex, but they have 
proven themselves to be effective and robust in analyzing a wide variety of data-types, ranging from 
psychological profiles to commodity prices.  Currently, all NOUS software has been written in this 
Deterministic vein.  The Numeric approach has progressed only as far as prototypes.   

The Numeric and Deterministic Methods have their advantages and disadvantages.  Despite its 
complexity, the Deterministic approach has a computational advantage because:  a) it does not 
require successive iterations; and b) computational time is unaffected by the number of orthogonal 
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dimensions.  It also does not run the risk of degenerate solutions or multiple local solutions.  The 
Numeric approach has the advantage of assigning each person and line unambiguous locations in a 
Cartesian coordinate space, and thus clearly specifying a point-line model, unlike the Deterministic 
approach which assumes such a space but is unable to label or identify positions within it.  Much 
work is being done to amalgamate the two approaches. 

While it is not possible to present the full Deterministic algorithm in this paper, a brief synopsis can 
be attempted: 

1. Type-A Differences.  The initial raw data matrix, called the Base array, is used to compute 
differences between every pair of persons for each item. 

2. Type-A Correlations.  Correlations are computed between item pairs in the Base array. 

3. Type-A Distances (2D).  The Type-A Differences and Type-A Correlations are combined to 
produce multiple estimates of the distance between each pair of persons, a separate estimate 
for each pair of items.  The distance is called “2D” because the geometrical formula behind 
it assumes that the person-pair and item-pair used to compute each estimate lie in the same 
plane.  To the degree they do not, the distances are underestimated.  In order to correct this 
underestimation, the distances are refined using the higher dimensional formula given in the 
next step. 

4. Type-A Distances (3D).  A formula very similar to the 2D formula is employed, but instead 
of estimating person-pair distances using differences on lines, we use distances on planes 
(which are given by the 2D distances) and correlations between planes (which are computed 
by correlating the 2D distance estimates for each item pair).  The 3D formula makes its own 
assumptions:  a) the two persons lie in the 3-dimensional space created by the two planes; b) 
the two persons lie in a plane perpendicular to the intersection of the two planes.  Violations 
of the first assumption cause the distance estimate to be underestimated; violations of the 
second causes it to be overestimated.  To remove the effects of such distortions, each 
distance is estimated multiple times with different combinations of planes.  Because it is 
reasonable to assume that the distortions will not be systematic across combinations of 
planes, we take a weighted average of these estimates to approximate the “true” distance 
between each pair of persons, or at least a distance estimate that suffers the same amount of 
shrinkage or expansion as all the other distances, which is sufficient for our purposes. 

5. Projections.  Using the Type-A Distances, we calculate where each person-point projects 
onto each line defined by a pair of person-points.  The projection formula, derived from 
classical geometry, makes no assumptions regarding the dimensionality of the space. 

6. Type-B Correlations.  The Base array already gives us raw data approximations of where 
each person-point projects onto each item-line.  Step 5 gives us estimates of where each 
person-point projects onto each line defined by a pair of person-points.  Using these two 
pieces of information, we compute a correlation between each item line and each person-
pair line.  This correlation is an estimate (subject to distributional assumptions) of the cosine 
between an item-line and a pair of persons. 

7. Type-B Distances.  The distance between each pair of persons is calculated anew using a 
formula that makes no dimensional assumptions.  Each person-pair distance is computed as 
the sum of Type-A Differences for that pair divided by the sum of Type-B Correlations for 
that pair (positive and negative differences are handled separately). 
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8. Type-B Differences.  Each Type-B Correlation is multiplied by the Type-B Distance 
corresponding to that person-pair to compute an estimate of the difference between those 
two persons that is specific to each item.  To a given person N, there is an array of differences 
between that person and all the other persons M in the sample.  (The negative sum of these 
NM difference estimates for a given item corresponds to the ability of person N.) 

9. Unsummed Estimates.  Each Type-B Difference between target person N and reference 
person M is subtracted from the raw data value of each person M to create an array of 
independent estimates of how person N will perform on a given item.  (The negative sum of 
raw data values across reference persons M equals the “difficulty” of the item, though this 
difficulty is not reported and is not of much use except as a way to anchor the person 
distribution.) 

10. Final Estimates.  Step 9 gives us a set of independent estimates for how Person N is likely to 
perform on a given item I.  From these, a set of output statistics is computed: 

a. The Mean of these estimates gives the final estimate of how Person N will perform 
on item I.   

b. Its Standard Error is given by the standard deviation of these estimates divided by the 
square root of the number of estimates for that cell.  Note that it is not directly 
driven by the number of items but rather by the number of persons. 

c. The Probability of success is calculated most directly as the percentage of estimates 
that fall above a specified threshold, such as 0.5 in the case of dichotomous data.   

d. The Cell Residual is the difference between each estimate and the raw data value for 
that cell, if it exists.   

e. The Fit for each cell is given by the cell residual divided by the standard deviation of 
the estimate for that cell.  Misfit values can be aggregated across rows and columns 
to give person and item fit statistics. 

f. The Person Separation for each item is given by the standard deviation of the final 
estimates for each item column (adjusted for error) divided by the Root Mean 
Square Error (RMSE) of the estimates in that column.  Item Separation does not 
have much meaning in the NOUS universe. 

g. The Reliability of an item is given by its Person Separation squared, divided by (1 + 
the Person Separation squared). 

Due to the way the Type-B Differences are computed, the sum of expected values will automatically 
equal the sum of observed values for each row (or equivalently, the sum of residuals will equal zero), 
constituting an acceptable and practical best-fit solution.  With older versions of NOUS, including 
the version used in this paper, the sum of residuals will not quite equal zero when the data are 
incomplete.  Upcoming versions correct this defect at the person level. 

The Deterministic algorithm naturally has theoretical limitations that are too involved to discuss here. 
The most important limitation is that it is forced to make statistical assumptions at crucial junctures.  
An example is the use of correlations.  Correlations, used as a way to estimate the cosine of an 
“objectively” existing angle, can severely over-estimate a small cosine if the person-points are not 
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symmetrically distributed in space.  Therefore, the Deterministic algorithm works best if a 
symmetrical (i.e. multivariate normal) distribution of points in space can be assumed.  Where such a 
distribution does not exist, the algorithm will generally correct distortions through averaging 
procedures, but not always.  Distorted correlations that are not corrected manifest either as cell misfit 
or high error or low variance explained, indicating that the objectivity requirements of the model 
have been violated. 

 

THE RESULTS 

NOUS was applied to dichotomous data from a recent high school mathematics and language exam.  
There was also an essay, ignored for the purposes of this paper.  Out of 55 math items and 45 
language items, a new hypothetical dataset was constructed consisting of 50 randomly selected math 
items and 15 language items, one of which was artificially constructed to be maximally aligned with 
the language dimension, having a point-biserial correlation of 0.65.  The remaining 14 items were 
chosen on the basis of their point-biserials (ranging from 0.36 to 0.65) to represent “language.”  The 
15 language items together represented a hypothetical language “subscale” within a larger 65 item test 
dominated by the mathematics dimension. Thus, the new “test” consisted of 50 math items plus the 
15 language items. 

Mathematics and Language measures were computed from the original test (all items) using the 
complete sample of students, approximately 10,000.  Of those, 100 students were chosen at random.  
The measures of these 100 students were set aside to represent Math and Language “benchmarks” 
against which to measure the success of NOUS and other methodologies in predicting overall 
Language performance on the basis of the 15 items in the Language subscale.  The hypothetical 
dataset therefore consisted of 100 persons and 65 items (50 math + 15 language). 

The small student sample allows a comparison of methodologies for small n, which makes it possible 
to expose weaknesses in methodologies that are highly sample dependent. 

To assess NOUS’s ability to recover the benchmark language measures with subscales of varying 
widths, a series of 15 runs was conducted, the first with 15 language items, the second with 14, and 
so on, until there was only one item in the language subscale.  The order of language item deletions 
was governed by their point-biserial correlations.  The items with the lowest point-biserials were 
deleted first; the item with the highest point-biserial was left for last. 

Because NOUS only computes estimates at the level of the individual item, there are several methods 
for extracting a NOUS measure from multiple language items: 

Method 1.  Compute a language score before running NOUS by averaging the language successes and 
failures for each student first.  This is treated as a composite language “item.”  Run the matrix 
through NOUS, including the composite item.  The resulting NOUS estimates for that composite 
item are the NOUS language subscale measures.  Note that I say “estimates” rather than “expected 
scores.”  This is because the expected scores (probabilities in the case of dichotomous data) are 
bounded by 0 and 1, and are therefore nonlinear.  The NOUS “estimates” on the other hand, though 
they look like probabilities, are not bounded by 1 and 0 and occasionally spill outside.  In fact, when 
graphed against logit measures they appear to be linear with the exception of a few students at the 
extremes.  Nonetheless, to facilitate comparison with WinSteps, the NOUS estimates are treated like 
probabilities and converted into logits through simple adjustments of the upper and lower bounds.  
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It is preferable to do this with actual probabilities, but the version of NOUS used in this paper does 
not compute them.  The formula used to do the logit conversion was: 

 







−
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ni
ni p

p
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1
ln  Eq. 5 

where Bni is the student’s ability and pni is computed as 
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Enini
ni MinMax
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p

−
−

=  Eq. 6 

Eni being the NOUS estimate, the Max and Min terms being the maximum and minimum NOUS 
estimates, respectively, in the Item  i column. 

Method 2.  Choose the language item that on a priori grounds best embodies the language 
dimension.  The NOUS estimate for this item, put through Equations 4 and 5, becomes the language 
measure.  This method works surprisingly well and is the easiest.  But it does not work quite as well 
as Method 3 in recovering the benchmark language measures. 

Method 3.  Compute the language score after running NOUS by summing the estimates across the 
subscale for a given person, dividing by the number of subscale items, and converting into logits 
using Equations 5 and 6. 

Method 3 was the one chosen for this paper because of its parity with WinSteps, the selected Rasch 
program.  The source of this parity is that the sum of NOUS estimates is constrained to equal the 
sum of corresponding observed values.  Therefore, by converting the sum of NOUS estimates into 
logits, we are exactly duplicating the WinSteps person ability computed in the first step of its 
estimation routine.  The result is that when NOUS and WinSteps are used to compute person 
estimates from the same complete dataset, they are very close.  This mitigates one artifactual source 
of difference between NOUS and WinSteps when computing subscales. 

On a reporting level, Method 3 has an intuitive simplicity that may cause it to become preferred.  A 
person’s predicted raw score, on the whole test or a subscale, becomes a simple average of estimated 
values (preferably converted into real probabilities first) which can be converted into logits for 
measurement purposes or retained as a subscale prediction fully comparable to a raw score. 

 

RECOVERING THE LANGUAGE BENCHMARK 

Our objective is to recover, using a language subscale consisting of 1 to 15 items, the language 
“benchmark” student measures that were computed with WinSteps from a 45 item language test.  
Figure 3 shows the correlations between the language subscale student measures computed using 
NOUS and the language “benchmark” measures computed using the longer test.  For purposes of 
comparison, language measures have also been computed using several other methods: 

1. WinSteps, using only the language subscale items (no math items). 
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2. WinSteps, combining both the language subscale items and the math items in a composite 
dimension. 

3. ConQuest MLE.  These are the student Maximum Likelihood Estimates (MLE) for the 
language dimension computed using the ConQuest 2-dimensional between-item model.  The 
estimation algorithm is similar to that used by WinSteps, except that person measures are 
allowed to be different for the math and language dimensions. 

4. ConQuest EAP.  These are the student expected a posteriori  (EAP) estimates for the 
language dimension computed using the ConQuest 2-dimensional between-item model.  
These estimates draw information from repeated samples of the student distribution. 

5. Neural Network.  Whereas the other methods are not specifically tailored to transfer 
information across dimensions, neural networks are.  They work like complicated regression 
models in which each item becomes a predictor variable for a specified dependent variable 
via one or more layers of intermediate variables.  In this case, the dependent variable is 
performance on a single language item as predicted by 14 math items (the demo version I 
used, Alyuda Forecaster which can be downloaded from the web, would only accommodate 
15 columns at a time).  I ran a parallel NOUS run for comparison purposes.  It remains to 
do a proper comparison study with neural networks, but such a study is hindered by the 
constraint that neural nets will only predict one dependent variable at a time.  Also, they 
require much larger datasets than was chosen for this small-sample study. 

It should be noted that the purpose of including additional methodologies in this test is not to 
conduct a comparison study.  The intention is to provide context and to show that these models are 
not identical and do not have the same objectives.  For instance, although the ConQuest 
generalization of Rasch models includes ways to model between-item and within-item 
multidimensionality, this is not quite the same as information transfer across correlated dimensions 
(though the EAP measures do allow transfer to a significant extent).  The model whose objectives 
most closely match those of NOUS is the neural network, but it is not yet possible to compare the 
two properly. 

CORRELATIONS,  ERRORS, AND OTHER COMPARISONS 

The first set of comparisons, given in Figure 3 and Table 1 (see Appendix of Tables), looks at the 
correlation (not disattenuated for error) between the measures produced using each method and the 
language benchmark.  These are “unweighted” in the sense that they have not been adjusted to 
account for the reliability of the person measures. 

We find that all methods yield similar correlations, with the exception of WinSteps (combined 
language and math) and the neural network.  When WinSteps combines language and math items, it 
constructs a composite dimension that is weighted according the number of items in each dimension.  
Since there are 55 math items and 15 or less language items, the combined WinSteps measures are 
hopelessly dominated by the math dimension (r = 0.98 – 1.0).  The fact that its correlations are in the 
0.65 – 0.75 range arises from a pre-existing 0.63 correlation between the language and math 
benchmark dimensions. 

The neural network achieves only a 0.53 correlation with the benchmark language dimension, but it 
was exposed to a worst-case scenario in which there were only 14 math items as predictors and 1 
language item as the dependent variable.  Faced with the same scenario, NOUS manages a 0.75 
correlation. 
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Otherwise, the methods yield similar correlations, the ConQuest EAP measures being the highest, 
followed by the NOUS measures.  The WinSteps (language items only) and ConQuest MLE 
correlations are virtually identical, highlighting the fact that ConQuest in effect performs a separate 
WinSteps-style run for each dimension specified by the user. 

The downward trend reflects the deterioration in language measures corresponding to a shrinking 
language subscale. 

Figure 3:  Unweighted Correlations with Language Benchmark (refer to Table 1) 
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It is soon apparent that Figure 3 is uninformative.  For instance, it reports a 0.72 correlation for 
WinSteps (language items only) when there are only two items in the subscale.  Graphing the 
WinSteps 2-item measures against the benchmark, we see that the relatively high correlation masks 
the unreliability and lack of precision of the 2-item measures (Figure 4).  In other words, WinSteps is 
essentially restating the original dichotomous data back at us.  Change a student’s raw score on the 
two items from a 1 to a 0 and his “measure” will change accordingly.  There is nothing to contradict 
it. 

Therefore, each method needs to be assessed in light of its reliability, which is a function of the Root 
Mean Square Error (RMSE) of the students.  Figure 5 shows the RMSE for each method.  Figure 6 
shows the Person Separation for each method (the ratio of the adjusted standard deviation of the 
measures to their RMSE).  These are used to compute a Reliability coefficient (R = 
P.Sep.^2/(1+P.Sep^2)) which, ranging from 0 to 1, is multiplied by the unweighted correlations of 
Figure 3 to give the Reliability-weighted correlations shown in Figure 7. 
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Figure 4:  Benchmark Measures vs. 2-Item Subscale Measures 

WinSteps Language Measures:  Benchmark vs 2 Item 
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Figure 5:  Root Mean Square Error across the Persons 

Person Measures, Root Mean Squared Errors, Method by # Items
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Figure 6:  Person Separation, Used to Compute Reliability 

Person Separation, Method by # Items
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Figure 7:  Correlations Weighted by Reliability 
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Figures 5-7 are quickly summarized.  NOUS maintains a low RMSE and a high Person Separation 
regardless of the size of the language subscale.  As a result, its measures retain a strong Reliability-
weighted correlation with the benchmark language dimension as the subscale shrinks.  The WinSteps 
combined language and math measures look respectable only because they are dominated by the 
math dimension, which is well-represented and reliable.  The neural network appears to be the next 
best performer, but it is impossible to tell because it has not been weighted by reliability.  It cannot 
offer standard error estimates at the individual person level -- only residuals.  The other IRT methods 
suffer high error and low reliability as the subscale shrinks, the EAP measures holding out the 
longest because of their ability to capture some information from the math items. 

What are we to make of these findings?  On the surface, NOUS appears to be the most reliable and 
consistent of the methods considered here for subscale estimation, but this finding rests heavily on 
the RMSE and Separation statistics.  Are the NOUS RMSE statistics comparable to the ConQuest 
and WinSteps statistics?  Not entirely, for the NOUS RMSE is not computed as a direct function of 
the number of items but rather of persons.  Also, it is best interpreted as a way to assess the internal 
consistency of the NOUS measurement structure, i.e., the degree to which different subsets of the 
dataset agree in their predictions for each cell, which is not necessarily the same as “reliability” in the 
ConQuest and WinSteps sense. 

Until the errors have been made strictly comparable, we are forced to retreat to what error and 
reliability mean on an intuitive level.  Reliability is signified by being able to delete a data value and 
predict it successfully from the rest of the data matrix, and being able to do this repeatedly with many 
data values.  It is also signified by being able to enter deliberately incorrect data values and have the 
model stubbornly insist on the correct value.  This is the type of experiment that is performed 
regularly with NOUS datasets, and in general a low error and a high separation corresponds to the 
ability to predict missing data values and correct wrong ones.  However, the experiment has yet to be 
performed in conjunction with other methods, and it involves some labor. 

CONTAMINATION FROM THE MATH DIMENSION 

Before closing, there is another important comparison to perform.  To what degree do NOUS 
estimates suffer contamination from the math dimension when constructing the language subscale?  
This can be assessed by comparing the correlations between the NOUS estimates and the math 
benchmark measures with the “true” correlation between the language benchmarks and the math 
benchmarks, which is 0.63.  If the NOUS correlations are higher than 0.63, it signifies contamination 
from the math dimension.  As before, the same comparisons are performed with the other methods. 

Figure 8 shows that the NOUS estimates do indeed suffer a certain amount of contamination from 
the math dimension.  Relative to the “true” correlation between language and math of 0.63, the 
NOUS estimates range from a maximum of 0.78 to a minimum of 0.67.  What is interesting is that 
the pattern is not linearly related to the size of the subscale.  When the subscale consists of 4 items, 
the subscale estimates almost succeed in shaking themselves loose from the math dimension.  One 
could theorize that this is because the first items to be deleted are those that have a more tenuous 
relationship to the latent language dimension, leaving the subscale more vulnerable.  The 
contamination decreases as we approach the hard core of the language subscale, but it increases again 
as this core is broken apart, leaving a single language item to define itself in the shadow of 50 math 
items. 

The pattern is repeated with the ConQuest EAP estimates which uniformly suffer a higher degree of 
correlation, finally approaching r = 0.99 with the last item, signifying a complete abdication to the 
math dimension.  The fact that the EAP curve exceeds the 0.63 threshold proves that the EAP 
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language measures do in fact draw information from the mathematics items.  The WinSteps 
(combined math and language) correlations are predictably very high, ranging from 0.98 to 1.0 due to 
the increasing dominance of the math dimension in the composite measure.  The MLE and 
WinSteps (language only) estimates are fully free of the math dimension because they ignore it 
entirely.  The neural net  value also seems to be free of it, though it is hard to be sure. 

Is there a theoretical reason for the NOUS estimates to be contaminated?  Yes.  The model specifies 
the computation of objective distances between person-points, and that specification has not been 
fully realized with this data, and is rarely perfectly realized.  It appears that the prevalence of math 
items relative to language items has caused person-points lying in the math dimension to be 
somewhat overestimated relative to those lying in the language dimension.  This has the effect of 
subtly but systematically distorting the Type-B correlations (relating item lines to person-pairs) to 
favor the math dimension.  Based on this diagnosis, there are theoretical remedies for closing the 
gap, but they will require changes and additions to the algorithm and improvement is likely to be 
asymptotic. 

Is contamination by the dominant dimension fatal in the computation of language measures?  
Probably not, but it depends on the extent of the contamination.  On a purely pragmatic level, these 
language subscale measures seem to be sufficiently representative of language to serve most purposes 
of subscale reporting.  They are certainly superior to the ad hoc methods psychometricians resort to at 
present – reporting percent items correct or assigning 1 to 3 stars for subscale performance.  
Nonetheless, inter-dimensional contamination is a serious issue that has yet to be sufficiently 
explored. 

Figure 8:  Correlations with the Math Dimension (Table 5) 

Correlations with Math Benchmark (Unweighted), Method by # Items
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PSYCHOMETRIC APPLICATIONS 

This paper has offered some simple illustrations suggesting that an algorithm embodying a Rasch-like 
non-unidimensional model can recover latent dimensions using subscales that may be as narrow as a 
single dichotomous item.  So far as I know, this cannot be done by other methods.  The problem of 
estimating subscales, while not at the top of the IRT research agenda, is certainly a common and 
thorny problem in daily practice.  To that extent, NOUS has shown itself worthy of further research, 
both in terms of understanding the geometrical paradigm of points and lines floating in an objective 
space and in terms of the algorithms needed to realize this paradigm. 

But a brief consideration will reveal that the problem in question is in fact broader than estimating 
subscales.  NOUS, despite its limitations, shows promise of being the IRT equivalent of multivariate 
regression.  Any problem that can be phrased as a regression problem can also be phrased as a  
NOUS problem.  But NOUS has this advantage which it shares with all the Rasch family of IRT 
models:  it rests on geometry, not statistics.  Just as the Rasch Model requires that persons occupy one and 
only one position in the narrow space of one dimension as a condition of fit, regardless of how the 
other persons and items are distributed in that space, so NOUS requires as a condition of fit that 
persons occupy one and only one position in a space of n-dimensions, regardless of how the other 
persons and items may be distributed in that space.  Distributions are the work of statistics; positions 
are the work of geometry.  While both Rasch and NOUS use statistics as a means to an end, perfect 
fit is only achieved when the geometrical ideal is met. 

The geometrical paradigm of NOUS is what makes missing data designs and multiple subscale 
designs possible.  Thus, non-unidimensional Rasch models are relevant to the following problems: 

1. Multidimensional Equating.  Inasmuch as test equating is defined simply as the ability to 
predict performance on one test from performance on another, there is no reason why test 
equating should be constrained to unidimensional test designs.  Let Test A consist of items 
erecting a D-dimensional space.  Then, so long as any other Test N has items in common 
with Test A that in combination erect the same D-dimensional space, NOUS can predict 
how a student who took Test N would have performed on Test A.   

This addresses a perennial difficulty in psychometrics – how vertically to equate grades (or 
instructional units within a year) that have qualitatively different contents.  We construct a 
hypothetical meta-test containing all possible contents across all grades.  Then, based on 
student performance on grade-specific multidimensional tests (where the latent orthogonal 
dimensions erect the same space as the meta-test and link to it through common items), we 
use NOUS to predict how the student would perform on the meta-test.  Since all students 
across grades are now modeled in terms of the same meta-test, they can now be compared 
with each other in terms of the hypothetical sum of expected scores they would get across all 
its contents. 

2. Educational Diagnostics.  Testing is intended to serve at least two educational needs:  a) 
measure achievement for accountability purposes; b) diagnose specific strengths and 
weakness of individual students.  Large-scale testing serves the first need fairly well, the 
second need quite poorly.  The non-unidimensional model makes it feasible to design tests 
with as many subscales as there are items and to compute individual student measures for 
each subscale comparable in reliability to the measures computed from large-scale 
assessments on a few broad dimensions.  Success depends on the degree to which:  a) the 
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dimensionality of each item is fully enfolded in the D-dimensional space erected by the 
remaining items on the test (which can be determined statistically); and b) the item can be 
related clearly to its specified latent diagnostic attribute (the problem of construct validity).  
Such a test, administered on a large scale or as part of an equated network of local tests, can 
provide diagnostic information at a level of refinement that teachers rarely see.  It also 
invites the creation of new diagnostic variables to tease out the full multidimensional 
complexity of children, a complexity currently obscured by the dominance of a few 
composite, politically-driven dimensions. 

3. Open-ended Items.  Open-ended (OE) items such as essay prompts pose serious difficulties 
for measurement and equating.  This is because it is too time-consuming and expensive to 
have more than a few OE items on a test and the OE dimension is often orthogonally 
distinct from the multiple-choice dimension.  This causes a dilemma.  Either the OE item is 
analyzed as if it were simply another MC item, in which case we lose its unique diagnostic 
properties, or it is analyzed separately as its own dimension, in which case we are reduced to 
assigning a single raw score that is both unreliable and hard to equate with other test 
administrations.  By transferring information from the MC dimension, a non-unidimensional 
scaling model makes it possible to report scale score measures for the OE items that 
embody the OE dimension while at the same time being equated to OE items from other 
test administrations through common MC linking items.  The equating is valid to the degree 
both test forms erect the same MC/OE dimensional space, even if operationalized by 
different items. 

So essential are these applications to the continued progress of psychometrics, that NOUS-flavored 
Rasch models are likely to become a standard addition to the psychometrician’s toolbox over the 
next two decades.  To that end, they warrant substantial and dedicated research beyond what has 
been possible to date. 
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APPENDIX OF TABLES 

Table 1:  Unweighted Correlations with the Language Benchmark Measures by Method and # Items in Language Subscale 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
WinSteps (L items only) with Language Benchmark 0.88 0.88 0.83 0.82 0.82 0.80 0.80 0.78 0.75 0.74 0.75 0.74 0.74 0.72 . 
ConQuest MLE (L+M items) with Language Benchmark 0.88 0.88 0.83 0.82 0.82 0.80 0.80 0.78 0.75 0.74 0.75 0.75 0.75 0.72 0.65 
ConQuest EAP (L+M items) with Language Benchmark 0.87 0.87 0.85 0.84 0.84 0.83 0.82 0.82 0.81 0.79 0.81 0.82 0.82 0.80 0.67 
NOUS (L+M items) with Language Benchmark 0.85 0.85 0.83 0.82 0.82 0.81 0.81 0.81 0.79 0.79 0.79 0.79 0.78 0.75 0.69 
WinSteps (L+M items) with Language Benchmark (98-100% 
correlation with Math Benchmark) 

0.76 0.75 0.74 0.73 0.72 0.72 0.71 0.70 0.69 0.69 0.69 0.68 0.68 0.66 0.65 

NOUS (14M+1L) with Language Benchmark               0.75 
Neural Net (14M+1L) with Language Benchmark               0.53 
 

Table 2:  Root Mean Square Error (RMSE) across Persons by Method and # Items in Language Subscale 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
NOUS (L+M items) 0.17 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.20 0.20 0.19 0.19 0.17 0.18 0.14 
ConQuest EAP (L+M items) 0.22 0.21 0.22 0.25 0.24 0.26 0.29 0.39 0.48 0.64 0.85 1.01 1.40 2.35 0.34* 
ConQuest MLE (L+M items) 0.44 0.44 0.51 0.55 0.57 0.67 0.72 0.78 0.87 0.93 1.10 1.22 1.55 2.01 5.81 
WinSteps (L items only) 0.74 0.74 0.82 0.82 0.84 0.82 0.87 0.94 1.00 1.07 1.16 1.28 1.55 2.94 NA 

*  The ConQuest EAP RMSE is very low for Item 1.  This is because it has collapsed on the language dimension and shifted to the more reliable math dimension. 

Table 3:  Person Separation by Method and # Items in Language Subscale 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
NOUS (L+M items) 4.30 4.09 4.08 3.82 3.83 3.84 3.88 3.78 3.64 3.62 3.87 3.78 4.31 4.13 5.43 
ConQuest EAP (L+M items) 3.33 3.41 3.20 2.86 2.95 2.75 2.40 1.67 1.18 0.61 0 0 0 0 1.95* 
ConQuest MLE (L+M items) 1.39 1.36 1.08 0.93 0.86 0.50 0.30 0 0 0 0 0 0 0 0 
WinSteps (L items only) 1.21 1.20 1.04 0.94 0.89 0.68 0.57 0.59 0 0 0 0 0 0 NA 

*  The relatively high ConQuest EAP Separation is driven by the low RMSE in the previous table. 
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Table 4:  Correlations with Language Benchmark, Weighted by Reliability, Methods by # Items in Language Subscale 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
R-Weighted NOUS (L+M items) with Language Benchmark 0.81 0.8 0.78 0.76 0.77 0.76 0.76 0.75 0.74 0.73 0.74 0.74 0.74 0.71 0.67 
Unweighted NOUS (14M+1L) with Language Benchmark . . . . . . . . . . . . . . 0.75 
Unweighted Neural Net (14M+1L) with Language 
Benchmark 

. . . . . . . . . . . . . . 0.53 

R-Weighted ConQuest EAP (L+M items) with Language 
Benchmark 

0.80 0.80 0.77 0.75 0.75 0.73 0.70 0.60 0.47 0.21 0 0 0 0 0.53* 

R-Weighted WinSteps (L+M items) with Language 
Benchmark (98-100% correlation with Math Benchmark) 

0.69 0.69 0.67 0.67 0.66 0.65 0.64 0.64 0.62 0.62 0.62 0.61 0.61 0.60 0.58 

R-Weighted ConQuest MLE (L+M items) with Language 
Benchmark 

0.58 0.57 0.45 0.38 0.35 0.16 0.07 0 0 0 0 0 0 0 0 

R-Weighted WinSteps (L items only) with Language 
Benchmark 

0.52 0.52 0.43 0.38 0.36 0.26 0.20 0.21 0 0 0 0 0 0 . 

*The high ConQuest EAP correlation in this cell is driven by the abnormally low RMSE, an artifact of an implicit shift in favor of the mathematics dimension. 

Table 5:  Unweighted Correlations with Math Benchmark, Methods by # Items in Language Subscale 

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
Unweighted WinSteps (L+M items) with Math Benchmark 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 
Unweighted ConQuest EAP (L+M items) with Math 
Benchmark 

0.82 0.83 0.84 0.84 0.85 0.86 0.86 0.83 0.80 0.80 0.76 0.73 0.78 0.83 0.99 

Unweighted NOUS (14M+1L) with Math Benchmark . . . . . . . . . . . . . . 0.82 
Unweighted NOUS (L+M items) with Math Benchmark 0.77 0.77 0.77 0.77 0.75 0.76 0.75 0.74 0.73 0.75 0.71 0.67 0.70 0.78 0.76 
Neural Net (14M+1L) with Math Benchmark . . . . . . . . . . . . . . 0.43 
Language Benchmark with Math Benchmark 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 
Unweighted WinSteps (L items only) with Math 
Benchmark 

0.60 0.60 0.59 0.59 0.58 0.56 0.56 0.56 0.54 0.52 0.53 0.48 0.43 0.44 0.46 

Unweighted ConQuest MLE (L+M items) with Math 
Benchmark 

0.60 0.60 0.59 0.59 0.58 0.56 0.56 0.54 0.52 0.53 0.48 0.43 0.44 0.46 0.38 

 


