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ABSTRACT 

Form equating methods have proceeded under the assumption that test forms should be 
unidimensional, both across forms and within each form.  This assumption is necessary when the 
data are fit to a unidimensional model, such as Rasch.  When the assumption is violated, variations in 
the dimensional mix of the items on each test form, as well as in the mix of skills in the student 
population, can lead to problematic testing anomalies.  The assumption ceases to be necessary, 
however, when data are fit to an appropriate multidimensional model.  In such a scenario, it becomes 
possible to reproduce the same composite dimension rigorously across multiple test forms, even 
when the relative mix of dimensions embodied in the items on each form varies substantially.  This 
paper applies one such multidimensional model, NOUS, to a simulated multidimensional dataset and 
shows how it avoids the pitfalls that can arise when fitting the same data to a single dimension.  
Some implications of equating multidimensional forms are discussed. 
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THE PROBLEM 

Test administrators at the state and local levels are under pressure to produce tests that reflect 
the range of content standards within a curriculum.  Psychometricians are under pressure to ensure 
the reproducibility of test results across test forms and test administrations, which is best achieved 
when items embody a single, well-defined dimension.  The result is a tradeoff between content 
validity and construct reliability.  Either a test adequately embodies the curriculum but cannot be 
reproduced on other or subsequent test forms, or it is so narrowly focused on a few contents that it 
does not provide a useful or complete picture of student performance. 

A number of methods have evolved to resolve this tension: 

1. One test form.  Apply the same test form on all occasions to all groups of examinees.  This 
has the great advantage that the test can be of any dimensional complexity.  Except for issues of 
differential item functioning, all students receive exactly the same test and are held to approximately 
the same standard.  No equating methods are necessary.  The price of such freedom includes the 
tendency for the test to lose its freshness and become easier over time, the inability to tailor the test 
to specific examinee populations (reducing its validity for those examinees), and a general vagueness 
regarding what, exactly, the test is testing. 

2. Benign Neglect.  Ignore the problem and assume that all test forms and items for a given 
content are reasonably unidimensional and can be equated.  This method is surprisingly effective due 
largely to the happy accident that dichotomous educational data tends to be unidimensional anyway, 
regardless of the wide array of standards to which items are assigned.  The method tends to break 
down when different item formats are used (multiple choice, open-ended, long text passages, etc.).  It 
is also prone to problems with composite dimensionality. 

3. Allow Composite Dimensions.  This is where a test is known to have more than one 
dimension but is analyzed with a unidimensional model.  The resulting measure is a composite, or 
average, of examinee performance on each of the dimensions.  In itself this is not a problem.  What 
is a problem is that composite dimensions can become quite unstable.  For one thing, each test form 
needs to represent the same amount of each dimension, e.g., have the correct proportion of items 
assigned to it.  This can be difficult to realize in practice, and it is hard to know whether one has 
succeeded until after the fact.  Worse, composite dimensions can reorient themselves according to 
the aptitudes of the examinee population.  A test calibrated on an examinee population with little 
variation in math ability and lots of variation in language ability will not behave the same way when 
applied to a population with lots of variation in math ability and little in language ability, even though 
it has the same items.  This can cause longitudinal growth curves to lurch unpleasantly.  A 
unidimensional model requires items in one dimension. 

4. Analyze Dimensions Separately.  Each content area or set of items found through various 
diagnostic statistics to lie in a distinct dimension is analyzed separately.  This is sound 
methodologically, but runs up against the practical limitation that there are often too few items per 
dimension to yield a reliable measure, and time constraints prevent adding more items. 

5. Employ Multidimensional Models.  There are a number of highly regarded multidimensional 
models available today, both in IRT and in parallel statistical schools of thought.  The model used 
here, NOUS, is yet another.  However, the literature on how to use such models for test equating 
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remains sparse and they do not seem to be used widely.  We propose a fairly intuitive and simple way 
of using NOUS to equate test forms. 

THE NOUS MODEL 

In 2004, NOUS (Non-Unidimensional Scaling) was introduced in the context of computing 
measures for item subscales by trading information across items and dimensions (Moulton, 2004).  It 
was found to be competitive with other methods of refining subscale measures, especially as the 
number of items in the subscale drops below seven.  The algorithm was based on a model which 
views persons as points floating in n-dimensional space, items as lines or measuring sticks floating in 
the same space, and data as approximations of where each person point projects perpendicularly 
onto each item line.  Fit to the model, with low error, indicates that the person points and item lines 
are coherent and reproducible and erect an objective space.  Besides subscale measurement, 
applications to multidimensional equating and open-ended scoring were discussed.   

A defining characteristic of the model was that it is geometrical.  Fit to the model implies a 
definite geometrical structure that transcends the observed data.  In this sense, it was seen to be 
philosophically consonant with the Rasch paradigm, and indeed reduced to a simple Rasch-like 
equation. 

 Gni ≡ Bnι - Dnι + ε ni Eq. 1 

The performance Gni of Person n on Item i is defined in terms of Person n’s ability on the iota 
dimension minus Item i’s difficulty on the same dimension plus some normally distributed error, 
where the iota dimension is defined by the spatial orientation of Item i.   

At the time of that paper, an alternative variant of NOUS (NOUS 2004) was being developed 
from the same geometric paradigm but realized entirely under the rubric of linear algebra (Silsdorf, 
2004).  While the older version (NOUS 1996) assumed a geometric space, it did not actually locate 
items and persons within that space in a coordinate system.  It also did not require the user to 
determine or specify a specific dimensionality for the dataset.  The newer version does, providing 
linearly independent dimensional coordinates for the item and person space for a specified number 
of dimensions, and these coordinates can be transferred across datasets.1 

The great advantage of a multidimensional model like NOUS is that it makes it possible to 
analyze datasets – e.g., to predict their missing values, spot aberrant values, and construct 
reproducible item and person parameters – even when their columns do not lie in a single dimension.  
Items can range across any number of dimensions, be expressible in many metrics, be positively or 
negatively correlated, even have very low correlations, so long as the number of items does not 
exceed the number of dimensions.  (In practice, one would prefer to have at least twice as many 
items as dimensions.)  The ability to predict missing values – ultimately the foundation of all 
psychometric equating designs – depends on the degree to which each item with a missing value lies 
in the subspace erected by the remaining items. 
                                                      
1 “Linearly Independent” means that all common multiples between a set of basis vectors have been removed so that it is 
impossible to predict from where a given vector projects onto one basis vector where it would project onto another basis 
vector.  This is not the same as being “orthogonal,” however, for it is possible for two vectors to be linearly independent 
without being strictly orthogonal.  For purposes of measurement and prediction, nothing is lost by requiring that basis 
vectors be only linearly independent. 
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NOUS 2004 models each data point as the Euclidean inner product of its row and column 
vector coordinates.  Let G be the observed data matrix, B the person ability matrix, E the item 
difficulty matrix and ε is the difference between the observed and estimated values.  Then, 

 G = B*E + ε Eq. 2a 
 
or spelled out using non-linear algebra notation,2 

 Gni = Bnx*Eix + Bny*Eiy + Bnz*Eiz + . . . + Bnd*Eid + ε ni Eq. 2b 

 
where the performance Gni of Person n on Item i is defined as Person n’s ability Bnx on the x 
dimension times the “easiness” Eix of Item i on the x dimension plus Person n’s ability on the y 
dimension times Item i’s “easiness” on the y dimension, and so forth up to d dimensions, plus an 
error term.  It will be noted that this, too, reduces to a Rasch-like formulation when only one 
dimension is considered. 

 Gni = Bnx*Eix + ε ni = Bnx/Dix + ε ni Eq. 3 

The person’s performance is seen as the product of a person ability parameter and an item 
easiness parameter, or alternatively as a person ability parameter divided by an item difficulty 
parameter which, recast in probabilistic form, is the Rasch model for the x dimension.  Recall that 
the original Rasch model was also multiplicative. 

One rationale for using the Euclidean inner product to model test scores is that it is an 
expression of how one vector projects onto another vector, and projection is the geometrical correlate 
of measurement.3  To measure a person’s height, we project (drop a perpendicular from) the top of the 
person’s head to a measuring stick.  To measure his math ability, we project him onto a math item, so 
to speak.  The resulting geometrical picture sees persons and items as vectors emanating from an 
origin in a Cartesian space of some number of dimensions, and each test score as where a given 
person vector projects onto a given item vector.  Trigonometry tells us that the projection equals the 
length of the person vector n multiplied by the cosine of its angle with the item vector i.   Let║n║ 
and ║i║ represent the lengths of the two vectors from the origin to their arrow-tips.  This projection 
is precisely analogous to Person n’s “ability” on the dimension defined by Item i. 

 Ability of Person n = Proj(n→i) = ║n║*cosθni  Eq. 4 

Figure 1 depicts what a projection onto a math item might mean for a person in a 2-dimensional 
space composed of math and language aptitude. 

                                                      
2 Although NOUS is based on linear algebra, we use a more explicit notation in order to spell out the operations involved.  
“I”, “E”, and other symbols are not to be confused with similar symbols in linear algebra. 

3 It can be proven using theorems of linear algebra that any continuous function can be approximated by a geometric 
projection to any desired degree of accuracy.  In addition, discrete functions can be approximated by projections in the 
sense that they will appear at intervals on a continuous function. 
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Figure 1 

 

The notion of a measurement or test score being represented by where a person projects onto an 
item leaves out an important ingredient, the metric of the item.  The magnitude of the test score is a 
function both of the person and the item.  Let the item’s contribution to the test score be 
represented by its vector length, it’s “easiness” or tendency to yield a higher test score.  Then, we can 
justify our mathematical intuition regarding the connection between fundamental measurement and 
the Euclidean inner product of two vectors by invoking the well-known linear algebra formula for a 
cosine.  The cosine of the angle between any two vectors is: 

 cosθni = (Bnx*Eix + Bny*Eiy + Bnz*Eiz + . . . + Bnd*Eid) / (║n║*║i║) Eq. 5 
 
where ║n║ and ║i║ are the lengths of vectors n and i from the origin and the numerator is the 
Euclidean inner product of the two vectors.4   

The Euclidean inner product is found by multiplying both sides of Equation 5 by ║n║*║i║.  
Suitably rearranging the left side of the equation, we have the NOUS model and a justification for 
claiming that fundamental measurement can indeed be modeled by a Euclidean inner product. 

                                                      
4 Notice that this is nearly identical to the formula for the Pearson correlation formula, correlations being the statistical 
equivalent of cosines.  The only difference – and it is often overlooked – is that the Pearson correlation is a true cosine only 
so long as each term in the numerator corresponds to a value on a linearly independent basis vector, i.e., represents a 
coordinate value in a Cartesian coordinate system.   When correlations are computed statistically across a sample of cases 
(each case being another term in the numerator) this condition is rarely met, which is why it is possible to get different 
correlations between the same two variables by using different subsets of the sample.  Fortunately, the violation of the 
linear independence requirement when calculating Pearson correlations can be compensated for by ensuring that the cases 
are a random representative sample of the target population.  Loss of geometrical rigor is compensated by statistical rigor.  
To remove the need for statistical assumptions on the other hand, we need only ensure that each component in the 
numerator is on its own linearly independent dimension. 

x-axis (language ability)

Person n

y-axis (math ability) 

Math Item i 

Projection n on i

Origin 

Angle θ 
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 (║n║*cosθni )* ║i║= (Bnx*Eix + Bny*Eiy + Bnz*Eiz + . . . + Bnd*Eid) Eq. 6 

Notice that (║n║*cosθni ) is equal to the projection of person vector n onto item vector i 
(Equation 4), which can be interpreted as the ability of Person n as projected onto the dimension 
defined by Item I.  Therefore, each data value is modeled as the product of a person ability on a 
dimension specified by a given item and the item’s easiness on the same dimension, given by its 
vector length.  This is, again, a Rasch formulation, but now in terms of the dimension created by the 
item.  Equation 3, on the other hand, derived from the right-hand side of the equation, is a Rasch 
formulation in terms of one of the component dimensions (x, y, z, ... or d).  Thus, both sides of the 
equation represent a decomposition of observed scores into person ability and item easiness, a 
separation of parameters that is an extremely useful and important property of linear models.  It may 
even be surmised, though a proof is not known to me, that only fit to a linear model allows for true 
parameter separability, i.e., special objectivity. 

THE ESTIMATION ALGORITHM 

The algorithm is implemented using Gaussian elimination to achieve an iterative Least Squares 
solution.  In the version used for this paper, missing data are assigned dummy values which iterate 
toward their model value in conjunction with the person and item parameters.  Upcoming versions 
of the algorithm remove the need to assign dummy values to missing cells, instead just ignoring them 
as is done in Rasch programs. 

After the user specifies a dimensionality d, NOUS works using three matrices:  the original data 
matrix M, a matrix of coordinates for each person or row called cbasis, (the basis for the column 
space of the estimates matrix), and a matrix of coordinates for each item or column called rbasis (the 
basis for the row space of the estimates matrix).  All the rows in the estimate matrix are formed by 
linear combinations of the rows of the rbasis.  All the columns in the estimate matrix are linear 
combinations of the columns of the cbasis.  It can be proven from linear algebra that cbasis and 
rbasis will have the same dimension or rank because the row space and the column space are the 
same.  An estimate for each cell is computed by multiplying the cbasis for its row by the rbasis for its 
column (Equation 2).   

NOUS adjusts the two basis matrices to maximize the fit (minimize the squared residuals) 
between the observed values and the estimated values.  The rbasis matrix is calculated by fixing the 
cbasis at arbitrary starting values and finding that rbasis which, when multiplied by the cbasis, yields 
estimates that best fit the observed values given the specified dimensionality.  This is equivalent to 
performing a simple linear regression in which we are solving for one set of coefficients given 
another set of coefficients and the observed data.  For a given column, the observations are the data 
values that go down that column, each of which is associated with a set of row coefficients (cbasis).  
Note that there is no requirement that the number of observations be the same in each column, 
which is why NOUS is highly robust to missing data designs.  In this way, we compute a preliminary 
set of column coordinates (rbasis). 

To compute an improved set of row coordinates (cbasis), the procedure is transposed.  Now the 
observed values go across each row.  We solve for the row coefficients taking the column 
coefficients (rbasis) that were calculated in the previous step as fixed.  In this way, we perform an 
alternating least squares regression back and forth between the columns and rows until the basis 
matrices and estimates converge.  Convergence is guaranteed regardless of the starting values of the 
matrices and the dummy starting values used for missing cells, which are recalculated and improved 
with each iteration.  (Again, remember that the use of starting values for missing cells is a temporary 
expedient dispensed with in upcoming versions of the algorithm.) 
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This alternating regression is similar to the process by which row and column parameters are 
calculated in Rasch algorithms, especially in the handling of missing cells (once NOUS upgrades 
from the starting estimate method), and it is quite similar to a procedure that has been around since 
the late 1970’s called Alternating Least Squares (ALS).5  The main difference between the NOUS 
2004 algorithm and ALS is that NOUS handles all the dimensions in a single equation for each 
iteration.  ALS steps up through the dimensions in a sequence of 1-dimensional runs applied to the 
residuals matrices from the previous dimensional runs, which is similar to how WinSteps calculates 
principal components.  There are also similarities to singular value decomposition (SVD), another 
method for performing row/column decomposition.  One advantage of NOUS is that while it does 
not approach basis orthogonality as SVD does, it produces good linearly independent bases vectors 
with low correlations that yield estimates identical to standard ALS and SVD algorithms, but in a 
more efficient manner.  In particular, it handles the missing data problem quite effectively.  The 
relative merits and deficiencies of the various approaches have yet to be studied, but the empirical 
results are similar. 

Figure 2:  Layout of a 2-Dimensional Data Matrix and Associated Bases 

 

LIMITATIONS 

The NOUS 2004 software is young and suffers limitations which are worth bearing in mind: 

                                                      
5 It can be shown from the theorems of Linear Algebra that ALS is guaranteed to converge to estimates that represent the 
smallest Euclidean distance from the observed values.  NOUS exploits the same property. 

Data Matrix M

Cell estimate for row n and 
column i:  Eni = Bnx*Eix + 
Bny*Eiy cbasis = person coordinates 

Bnx, Bny for row vector n 

rbasis = item coordinates,  
Eix, Eiy for column vector i 
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1. NOUS assumes an interval (non-ordinal) metric.  Ordinal data can often be analyzed as 
is, but the resulting NOUS estimates will spill outside the floor and ceiling limits.  
Conversion of ordinal data to logits prior to analysis is recommended.6 

2. We have not yet programmed the calculation of standard errors for each cell estimate 
and person/item parameter.  One useful work-around is to NOUS-analyze the residuals 
matrix ( absolute(Observed – Estimate) ) at one dimension to compute an expected 
absolute residual for each cell, which is equivalent to the standard deviation of the cell 
estimate assuming that the data value is not missing. 

3. Missing values are assigned dummy starting values which are refined as the program 
iterates.  This is not a problem with orderly data, but there exist types of data for which 
no valid geometrical solution exists for predicting a missing cell, and in these situations 
the choice of starting value may affect the final estimate for that cell.  Upcoming 
versions remove this issue. 

4. NOUS makes it possible to anchor a given run to a specified set of row or column 
coordinates.  For instance, one can calibrate the items in a specified dimensional space 
using one data set and apply the resulting rbasis file to another data set to force the new 
person coordinates into the same coordinate system as those from the first data set.  
However, one can anchor only to an entire rbasis file as a whole, not to selected items 
within it, so it is not yet as flexible as item-anchoring in the WinSteps sense, though 
simple work-arounds exist. 

5. There are circumstances when the geometrical specifications of the model are 
sufficiently violated that NOUS returns unlikely answers.  Methods for conditioning 
such estimates with statistical assumptions to yield reasonable answers are being 
developed.   

Notwithstanding these limitations, the current version works sufficiently well to yield results that 
are at least as useful as those produced by existing psychometric software packages. 

 

                                                      
6 To convert multidimensional ordinal data sets to logits it is necessary to “logitize” the data for each column separately in a 
way analogous to standardization or conversion into z-scores (appropriate for interval data).  The raw logit value 
corresponding to a given value is given by the log of the number of cases in the column expected to score below that value 
(for that column) divided by the number expected to score above, minus the log difficulty of the item which is the log of 
the number of cases at or above a specified value divided by the number below that value.  When a given value is compared 
to other matching values, it is assumed to score better than half of them.  The resulting formula for dichotomous data for 
column i  is: 

 Logit(1)i = ln ( (count(0)i + count(1)i/2)/(count(1)i/2) )  –  ln ( count(0)i/count(1)i ), while Eq. 7 

 Logit(0)i = ln ( (count(0)i/2) / (count(1)i + count(0)i/2) )  –  ln ( count(0)i/count(1)i ) Eq. 8 

After running the raw logitized values through NOUS, convert the resulting logit estimates into expected values using the 
logit-to-probability formula: 

 Pni = exp(logit NOUS Estimate) / (  1 +exp( logit NOUS Estimate) ) Eq. 9 
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MULTIDIMENSIONAL EQUATING 

All equating designs ultimately ask the question:  “Given the observed performance of a student 
on one test form, how would the student have performed on a hypothetical test form administered to 
all students?”   

It is sometimes assumed that equating is only meaningful across unidimensional tests that share a 
common dimension.  But note that there is nothing in the definition above that specifies or assumes 
unidimensionality.  It is merely necessary that performance on one test form be sufficient to predict 
performance on a hypothetical test form administered, in theory if not in practice, to all students.  
Let us call the test form that a student actually takes the Observed Form.  Call the hypothetical test 
form in terms of which all students are to be compared the Reference Form.  The definition above 
leaves open the possibility that so long as we can accurately predict how all students in a population 
would perform on the Reference Form based on their performance on an Observed Form, no matter 
how multidimensional these forms might be, the test forms are equated and we can compare 
students on a common metric.  This allows the psychometric burden to shift from measurement to 
interpretability. 

NOUS is designed to predict performance on a Reference Form based on performance on 
Observed Forms that may happen to be multidimensional.  It does this by being able to predict 
missing values, whether they be randomly missing (more likely on adaptive test designs) or non-
randomly missing (true of almost all test equating designs and especially challenging in vertical 
equating designs).  The missing values may include the items on the Reference Form that a student 
does not take, or they may be the composite score for the entire Reference Form or a subset of the 
Reference Form.  Thus, the effectiveness of any equating model depends on its ability to predict 
randomly and non-randomly missing data.  In fact, all equating designs are missing data prediction 
problems at some level. 

We hasten to add that there are numerous multidimensional methodologies besides NOUS such 
as CONQUEST, NOHARM, Singular Value Decomposition, Alternating Least Squares, Neural 
Networks, various Bayesian methods, and Multivariate Regression, not to mention a host of missing 
cell imputation techniques, which can in principle be used to predict missing cells from 
multidimensional data sets, or at least to compute parameters to predict missing cells.  It is not the 
purpose of this paper to attempt comparisons at this time, but rather to show how any 
multidimensional model – and NOUS in particular – can be applied to this particular problem. 

As stated earlier, NOUS as a geometrical model can predict any missing cell to the degree the item 
vector containing the missing cell is described by the subspace erected by the remaining items.  Thus, 
if we are trying to predict a composite test score from a Reference Form, the Observed Form needs 
to contain items that capture (or exceed) the same dimensions as those that go into the composite 
score on the Reference Form.  To the degree the Reference Form contains dimensions that are not 
in the Observed Form the predictions will be incorrect, for there is no geometrical solution to the 
problem.  However, the judicious application of statistical assumptions may assist NOUS to yield at 
least a reasonable solution in such cases. 

Mere ability to predict missing values is not, however, the defining or most important feature of 
NOUS, or the Rasch model for that matter.  There are many cases where the observed values might 
simply be wrong.  This is another way of saying that they reflect the intrusion of dimensions (such as 
a scoring error) that are irrelevant to the multidimensional dimensional construct(s) of the test and 
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should be disregarded anyway for purposes of measurement.  Thus, the purpose of NOUS is less to 
predict actual missing cells than to erect a multidimensional measurement structure that can be 
applied across multiple test forms and situations and measure those aspects of a person in which we 
are most interested, as well as do a “reasonable” job of explaining his or her performance on our test 
instruments. 

STEPS FOR APPLYING NOUS TO AN EQUATING PROBLEM 

Before proceeding with actual examples, here is a thumbnail sketch of a possible equating 
procedure.   

1. Define a Composite Dimension.  We begin with a complete or incomplete dataset of person 
scores on a set of items constituting an item bank.  We select a subset of items to define the 
dimension or composite dimension we are interested in, weighted accordingly.  It could even be the 
entire item bank.  Call this the Reference Form.  The goal of the equating, then, is to predict how 
every student who ever takes any subsection of the test (the Observed Form) would perform on the 
Reference Form.  The logit score of that person on the Reference Form becomes that person’s 
measure.  To the degree we can accurately predict examinee performance on the Reference Form, we 
can compare all examinees on the same metric – even if they have taken different forms, even if the 
forms are multidimensional. 

2. Calibrate Item Coordinates.  We run the dataset through NOUS and find the dimensionality 
D that best optimizes the prediction of missing cells in the Reference Form.  Analysis of fit is used to 
clean the data relative to dimensionality D.  This dimensionality is recorded for future reference.  All 
items, plus any composite scales or subscales of interest to the user, are analyzed together to compute 
item, scale, and subscale coordinates, saved in the rbasis file.  These are recorded along with the 
dimensionality and any additional item parameters that might be needed. 

3. Construct New Test Forms.  We construct test forms to meet the following test 
specification:  Each must consist of items which individually or collectively represent every 
dimension D that is represented in the Reference Form and its associated scale and subscales.  That 
means the items in each form should, individually or collectively, have non-zero values for each of 
the dimensions specified by the Reference Form.  In addition, it is necessary to have a content expert 
review the items to make sure that all dimensions are adequately represented.  Statistical criteria alone 
do not suffice to establish adequate dimensional coverage, but an obvious method for checking is to 
see how well the items on a proposed new form predict the Reference Form data when run through 
NOUS.  Reliability is maximized by increasing the number of items on the form and targeting their 
difficulty on the examinee population appropriately.  While the overall dimensional coverage needs to 
match, the proportion of items assigned to each dimension does not need to match that of the 
Reference Form.  In addition, none of the items on the new form need to belong to the Reference 
Form, so long as they all are calibrated together. 

4. Administer Test Forms.  Each test form is administered and scored for a sample of students 
to be measured on a common scale or subscale. 

5. Compute Person Coordinates.  We run the new data through NOUS anchoring the items at 
their pre-calibrated coordinate values.  NOUS calculates person coordinates as well as estimates for 
how each person would have performed on the Reference Form.  Analysis of fit is performed and 
the person coordinates and Reference Form estimates are adjusted accordingly.  Again, note that our 
prediction of performance on the Reference Form does not rely on the form’s having Reference 
Form items. 



 

11 

6. Compute Person Measures.  Sum the person estimates for the Reference Form, convert into 
a percentage, and compute a logit measure for how that person would have performed on the 
Reference Form.  Alternatively, simply predict the composite score on the Reference Form directly, 
as well as any subscale scores.  These are the equated measures.  Note that we are not reporting the 
person’s coordinate measures, though such is theoretically possible.  The reason is that such 
coordinates are abstract and hard to interpret, whereas the Reference Form is tangible and easy to 
explain and represents what the test administrator means by the test, regardless of its dimensional 
richness.  Person measures can always be related back to expected performance on the Reference 
Form.  As long as the Reference Form is held constant, the person measures are comparable.  An 
additional reporting metric involves computing person measures using Equation 6, in which the cell 
estimates are divided by the length of the Item vector (its easiness).  This effectively removes item 
easiness from the reported results. 

The use of NOUS to equate test forms is still in its infancy and optimal procedure have yet to be 
determined.   

4-DIMENSIONAL SIMULATED DATA 

To illustrate how an equating procedure might work, we step through a simulated 4-dimensional 
equating problem.  See Tables 1-??.  The data set was created by populating a 4-dimensional rbasis 
file and cbasis file with random numbers and computing their Euclidean inner product.  The 
resulting numbers were rounded to add a little statistical noise.  Data were deleted to mimic a 
situation in which 30 students are administered Form A and Form B.  Although this is simulated 
data, similar procedures have been applied to real data with similar results. 

STEP 1:  ASSEMBLE DATA 

Table 1 provides the data matrix.  There are 30 “students” down the rows, each of whom took 
either Form A or Form B.  There are 30 “items” across the top, separated into subscales A, B, and C, 
representing different types of contents.  We see that each student took 20 out of the 30 items, but a 
different 20 depending on which form they were given.  Off to the right is space for an as-yet non-
existent Reference Form which will consist solely of the average scores for subscales A, B, and C, 
plus an average score across all 30 items.  They are called composite scores.  Because each row 
contains missing data, we are unable to calculate the composite scores in a way that holds each 
student to the same standard. 

STEP 2:  RUN INPUT DATA THROUGH NOUS TO ASSESS DIMENSIONALITY 

Table 2 (actually a graph) depicts how well the program predicts the values of known cells made 
missing for each of 10 dimensions.  Two statistics are graphed:  a) the mean absolute residual 
between the true value and the predicted value; b) the variance of the true values that is explained by 
the predicted values.  Both statistics tell the same story.  This dataset is most accurately modeled with 
four dimensions, which was expected given that we generated the data with a 4-dimensional cbasis 
and rbasis. 

Another important finding is that NOUS at four dimensions is doing a good job of predicting 
missing cells, even with large blocks of the dataset missing.  The mean residual is 0.12 out of a scale 
that ranges across 10 points or so.  The variance explained is 0.95.  Therefore, we conclude that it is 
reasonably safe to accept NOUS’s predictions for the truly missing cells as reasonably close to the 
true, or most likely, values.  This is important because it is the foundation of our claim that we can 
compare students who take different test forms.  We are saying, in effect, that we can predict how 
they will do on items they have not in fact taken. 
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STEP 3:  RERUN NOUS AT DIMENSION 4 TO OBTAIN CELL ESTIMATES 

Having found that four dimensions are optimal to model this data, we run NOUS at that 
dimensionality to compute values for missing cells and replace the observed data values with 
modeled values.  This yields a fully populated matrix.  Since all students now have “data” on each 
item, we can calculate subscale averages and overall averages to create a “Reference Form” based on 
which all students will henceforth be compared. 

STEP 4:  RERUN NOUS AT DIMENSION 4 ON CELL ESTIMATES PLUS THE REFERENCE FORM 

By rerunning NOUS on the estimates matrix plus the newly populated Reference Form, we can 
compute coordinate values for each item, including those for each of the four Reference Form 
variables.  The resulting matrix is called rbasis.  This is exactly analogous to an “item anchor” file 
from WinSteps, except that it is in four dimensions rather than one.  It is this file that makes it 
possible to equate the two forms and compare students without having to rerun NOUS on the whole 
data set every time a new student is added. 

STEP 5:  RERUN NOUS ON THE ORIGINAL DATA, PLUS THE BLANK REFERENCE SET, USING 
THE ANCHORED RBASIS 

Now all the items, including the composite variables on the Reference Form, have fixed 
coordinate values that can be applied to the original data matrix.  They can not only be used to fill in 
the missing cells of the items the students did not take, they can even fill in the missing cells of the 
Reference Form – even though the columns are completely devoid of data!  NOUS performs this 
remarkable calculation simply by multiplying the stored rbasis values for the composite variables by 
the cbasis values computed for each person based on his observed data.  It is these predicted values 
on the Reference Form for each composite variable that becomes the student’s measure and 
diagnostic profile, overall and for the three special contents labeled A, B, and C.  This makes it 
possible to compute a series of comparable person measures based on his or her scores on any 
subset of items in the 30-item bank – so long as these items adequately embody the four dimensions 
of this particular achievement space. 

But does it work?  Can NOUS really calculate reasonable measures for the Reference Form 
based only on some student data and the rbasis.  To answer this question, we compare the new 
Reference Form measures computed from the original data and rbasis, much of the data missing, 
with the original Reference Form numbers we computed in Step 3 based on a full matrix.  If the two 
are in substantial agreement, we can conclude that the rbasis values are sufficient to equate students 
who take different forms and can be used henceforth for new students. 

STEP 6:  COMPARE REFERENCE FORM MEASURES USING THE TWO METHODS 

 We find that the Reference Form measures are in substantial agreement, r = 0.98.  The measures 
computed using an anchored rbasis are sufficient to equate students who take different forms.  While 
the new measures do not have quite the same standard deviation as those based on the fully 
populated matrix (whose predictions we trust based on the findings in Step 2), this does not matter 
since all students receive their measures using the anchored rbasis method.  It is enough that they 
have a strongly linear relationship. 
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Table 1:  Input Data, 30 students by 30 items, 2 forms, no reference form 

  Subscales          Item Bank                Reference Form 
  A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C  Composite Scores 
Form 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 A B C All 
A 1 6 3 6 6 7 5 3 2 5 7 2 5 3 4 5 4 6 6 3 5 . . . . . . . . . . . . . . 
A 2 2 2 4 4 5 4 2 2 3 4 2 3 3 2 4 4 3 5 3 4 . . . . . . . . . . . . . . 
A 3 3 3 2 3 3 3 2 3 3 4 2 5 3 2 5 2 4 4 2 3 . . . . . . . . . . . . . . 
A 4 5 3 4 4 5 3 2 2 3 5 3 5 3 3 5 3 5 5 3 3 . . . . . . . . . . . . . . 
A 5 4 2 3 3 3 2 2 1 3 4 2 4 2 3 4 2 4 3 2 2 . . . . . . . . . . . . . . 
A 6 3 4 3 4 4 2 2 2 1 4 4 4 3 1 4 4 4 4 4 4 . . . . . . . . . . . . . . 
A 7 4 3 3 4 5 4 2 3 4 5 2 5 3 4 6 2 5 6 2 3 . . . . . . . . . . . . . . 
A 8 5 2 6 6 7 6 3 2 5 7 2 5 4 4 5 4 6 6 3 5 . . . . . . . . . . . . . . 
A 9 5 4 5 6 6 4 3 2 3 6 4 5 4 3 5 5 6 5 4 5 . . . . . . . . . . . . . . 
A 10 5 3 4 5 6 5 3 4 6 7 2 6 4 5 8 2 6 7 3 4 . . . . . . . . . . . . . . 
A 11 3 3 2 3 4 3 2 2 2 4 3 5 3 2 5 3 4 4 3 3 . . . . . . . . . . . . . . 
A 12 4 3 4 5 5 4 2 2 2 5 3 4 3 2 5 5 5 5 4 5 . . . . . . . . . . . . . . 
A 13 5 2 6 6 7 5 3 2 4 6 2 4 3 4 5 4 5 6 3 5 . . . . . . . . . . . . . . 
A 14 4 2 4 5 6 5 2 3 5 6 2 5 3 4 6 3 5 6 3 4 . . . . . . . . . . . . . . 
A 15 5 4 5 6 6 4 3 2 3 6 4 5 4 3 6 5 6 6 4 5 . . . . . . . . . . . . . . 
B 16 . . . . . . . . . . 2 4 4 4 6 4 5 7 3 6 8 3 6 6 6 5 6 4 8 3 . . . . 
B 17 . . . . . . . . . . 3 4 4 3 5 4 5 6 3 5 7 2 6 5 6 5 5 4 6 3 . . . . 
B 18 . . . . . . . . . . 3 7 5 5 8 5 7 9 4 6 10 4 8 7 7 6 8 6 8 5 . . . . 
B 19 . . . . . . . . . . 3 3 3 2 4 3 4 4 3 4 5 1 5 3 5 4 4 3 4 3 . . . . 
B 20 . . . . . . . . . . 2 4 2 3 4 1 4 3 2 2 4 3 4 4 3 1 4 4 3 3 . . . . 
B 21 . . . . . . . . . . 3 4 3 2 4 5 5 5 4 4 6 2 6 4 5 4 4 3 5 3 . . . . 
B 22 . . . . . . . . . . 3 5 3 3 5 3 5 5 3 3 6 3 6 5 5 3 5 5 4 4 . . . . 
B 23 . . . . . . . . . . 3 6 3 3 6 3 6 5 3 3 7 4 6 5 5 3 6 5 4 5 . . . . 
B 24 . . . . . . . . . . 1 3 2 2 3 2 4 4 2 3 5 2 4 3 3 3 4 3 4 2 . . . . 
B 25 . . . . . . . . . . 2 4 3 3 5 2 4 5 2 3 6 2 4 4 5 4 5 4 5 2 . . . . 
B 26 . . . . . . . . . . 2 4 3 3 4 4 4 5 3 4 6 2 5 4 4 4 4 3 5 3 . . . . 
B 27 . . . . . . . . . . 3 5 3 3 5 4 5 5 3 4 7 3 6 4 5 4 5 4 5 4 . . . . 
B 28 . . . . . . . . . . 2 4 4 3 5 4 4 6 3 5 7 2 5 5 5 5 5 3 7 2 . . . . 
B 29 . . . . . . . . . . 4 6 4 3 7 5 6 6 4 5 8 3 8 5 7 5 7 6 6 5 . . . . 
B 30 . . . . . . . . . . 2 4 2 2 5 2 4 4 2 2 5 3 4 4 4 2 4 4 3 3 . . . . 
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Table 2:  Graph showing which level of dimensionality does the best job of predicting the true values of cells made missing 

Pseudo-Missing Mean Absolute Residual by Dimension,
Optimal Dimensionality = 4
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Table 3:  NOUS estimates for each cell, missing and non-missing.  The Reference Form numbers are averaged from the estimates as a whole and for each 
subscale 

  Subscales          Item Bank         Predicted values    Reference Form 

  A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C  Composite Scores 

Form 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 A B C All 

A 1 5.9 2.5 6.1 6.1 6.9 5.0 3.0 1.8 4.8 6.9 2.2 5.0 3.3 4.3 5.2 4.0 6.0 6.0 3.2 4.7 7.5 4.2 6.2 6.0 4.0 3.3 5.3 3.9 6.2 4.1 4.4 4.4 5.5 4.8 

A 2 2.1 1.9 3.7 4.3 5.0 4.2 1.8 2.1 2.7 4.2 2.1 2.9 3.1 2.0 3.9 3.7 3.4 4.8 2.8 4.3 5.5 0.9 4.6 3.3 4.8 4.6 3.9 2.6 5.3 1.9 3.0 3.5 3.7 3.4 

A 3 2.9 2.8 1.9 2.9 3.4 2.8 1.7 2.7 2.8 4.0 2.4 4.5 2.8 2.4 5.3 1.9 4.0 4.4 2.3 2.6 5.5 2.3 4.6 3.8 5.1 3.2 5.1 4.6 3.8 3.1 3.1 3.2 3.9 3.4 

A 4 4.8 3.2 3.7 4.3 4.6 3.1 2.4 1.9 3.2 5.2 2.8 4.9 2.8 3.0 5.1 3.1 5.2 4.7 2.9 3.3 6.2 3.3 5.7 4.6 4.5 2.9 5.0 4.4 4.2 4.1 3.8 3.7 4.4 4.0 

A 5 4.2 2.3 2.9 3.1 3.3 2.1 1.8 1.2 2.7 4.1 1.8 3.9 1.8 2.7 3.8 1.8 4.1 3.3 1.9 2.0 4.5 3.2 4.0 3.8 2.6 1.3 3.7 3.5 2.7 3.3 2.8 2.5 3.4 2.9 

A 6 3.1 3.8 2.9 3.9 3.9 2.3 2.0 1.8 0.9 3.8 3.9 4.0 3.1 1.1 4.3 4.4 4.2 3.9 3.8 3.9 5.4 0.8 6.2 2.6 6.1 4.6 4.3 3.7 3.6 3.6 3.5 3.7 3.4 3.5 

A 7 4.0 2.6 3.1 3.9 4.8 4.0 2.2 3.0 4.4 5.3 2.0 5.2 3.1 3.7 6.1 2.0 4.9 5.5 2.3 3.2 6.7 3.5 5.0 5.3 4.9 3.2 5.9 5.1 5.0 3.5 3.6 3.7 5.0 4.1 

A 8 5.2 2.2 6.1 6.1 7.2 5.6 2.9 2.2 5.0 6.8 2.0 4.7 3.5 4.2 5.3 4.1 5.6 6.4 3.1 5.0 7.7 3.8 5.9 5.9 4.3 3.9 5.3 3.7 6.7 3.5 4.3 4.5 5.5 4.8 

A 9 5.2 3.8 5.1 5.8 6.0 3.9 2.9 1.9 2.8 6.0 3.8 5.1 3.6 2.8 5.2 5.1 5.8 5.5 4.2 4.9 7.2 2.6 7.3 4.6 5.9 4.6 5.3 4.3 5.4 4.5 4.5 4.6 4.9 4.7 

A 10 5.0 3.0 3.9 4.9 6.1 5.3 2.8 3.9 6.0 6.8 2.1 6.5 3.9 4.9 7.7 2.2 6.1 7.1 2.6 3.9 8.5 4.7 6.0 6.9 5.9 3.8 7.5 6.4 6.5 4.2 4.5 4.6 6.4 5.2 

A 11 3.1 3.3 2.3 3.3 3.6 2.6 1.9 2.4 2.2 4.0 3.0 4.4 2.9 2.0 5.0 2.9 4.1 4.3 2.9 3.1 5.5 1.8 5.3 3.4 5.5 3.8 4.9 4.4 3.7 3.4 3.3 3.4 3.8 3.5 

A 12 3.7 3.3 4.2 5.0 5.3 3.7 2.4 2.0 2.3 5.0 3.4 4.2 3.4 2.1 4.6 4.7 4.7 5.0 3.8 4.7 6.4 1.5 6.4 3.7 5.8 4.9 4.7 3.6 5.1 3.5 3.9 4.2 4.2 4.1 

A 13 4.8 2.1 5.9 5.9 6.8 5.2 2.8 1.8 4.4 6.3 2.0 4.2 3.3 3.8 4.6 4.2 5.2 5.9 3.0 4.9 7.1 3.3 5.7 5.3 4.0 3.8 4.8 3.2 6.3 3.3 4.1 4.2 5.1 4.5 

A 14 4.1 2.3 4.2 4.8 5.9 5.0 2.5 3.0 4.8 5.9 1.9 4.9 3.5 3.9 5.9 2.8 5.0 6.2 2.6 4.1 7.3 3.4 5.3 5.6 4.9 3.9 5.8 4.5 6.1 3.2 3.9 4.1 5.3 4.4 

A 15 5.1 4.0 5.0 5.8 6.1 4.1 2.9 2.3 3.1 6.1 3.9 5.4 3.9 2.9 5.7 5.1 5.9 5.8 4.2 5.0 7.6 2.6 7.4 4.8 6.4 4.9 5.7 4.7 5.7 4.5 4.7 4.8 5.2 4.9 

B 16 3.8 2.0 5.5 6.1 7.5 6.5 2.8 3.2 5.3 6.6 1.9 4.5 4.1 4.1 5.9 4.1 5.1 7.2 3.1 5.6 8.2 2.8 5.9 5.9 5.6 5.3 6.0 4.0 7.8 2.8 4.3 4.8 5.8 5.0 

B 17 3.5 2.7 4.5 5.2 6.0 4.9 2.4 2.6 3.6 5.5 2.7 4.3 3.7 2.9 5.3 4.2 4.8 5.9 3.4 4.9 7.1 2.0 6.0 4.6 5.8 5.0 5.3 3.9 6.2 3.1 4.0 4.4 4.8 4.4 

B 18 5.8 3.7 6.1 7.0 8.3 6.7 3.5 3.8 5.9 8.1 3.3 6.7 4.9 4.9 7.9 4.8 7.1 8.4 4.1 6.1 10.1 4.2 8.0 7.3 7.3 5.8 7.9 6.1 8.3 4.7 5.6 5.9 7.2 6.2 

B 19 2.7 2.7 3.0 3.8 4.1 3.0 1.8 1.8 1.9 3.9 2.7 3.5 2.8 1.7 4.0 3.6 3.7 4.1 2.9 3.6 5.2 1.2 5.0 3.0 4.9 4.0 4.0 3.2 4.1 2.7 3.1 3.3 3.4 3.3 

B 20 3.9 2.3 2.3 2.7 3.0 2.0 1.7 1.6 2.8 3.9 1.7 4.1 1.9 2.7 4.1 1.4 4.0 3.3 1.7 1.7 4.5 3.2 3.8 3.8 2.9 1.3 4.0 3.8 2.7 3.2 2.7 2.5 3.4 2.9 

B 21 4.2 2.9 4.8 5.2 5.5 3.7 2.5 1.4 2.4 5.1 3.1 3.9 3.1 2.3 4.0 4.7 4.8 4.7 3.6 4.6 6.1 1.9 6.1 3.8 4.8 4.2 4.1 3.1 4.9 3.5 3.8 4.0 4.1 4.0 

B 22 4.6 3.4 3.4 4.1 4.4 3.0 2.3 2.1 3.1 5.1 2.9 5.1 2.9 2.9 5.3 3.0 5.2 4.7 2.9 3.2 6.2 3.1 5.8 4.5 4.9 3.1 5.2 4.7 4.1 4.1 3.8 3.7 4.5 4.0 

B 23 5.4 3.8 3.6 4.3 4.6 2.9 2.6 2.2 3.4 5.6 3.1 5.9 3.0 3.4 5.9 2.9 5.8 5.0 3.1 3.1 6.7 3.9 6.3 5.1 5.0 2.8 5.8 5.4 4.1 4.8 4.1 3.9 4.9 4.3 

B 24 2.8 1.6 3.1 3.4 4.0 3.2 1.7 1.7 2.8 3.9 1.5 3.0 2.3 2.4 3.6 2.4 3.4 3.9 2.0 3.0 4.7 2.0 3.7 3.5 3.3 2.7 3.6 2.7 4.0 2.2 2.6 2.8 3.4 2.9 

B 25 2.3 2.0 2.4 3.4 4.3 4.0 1.7 3.0 3.6 4.2 1.7 3.9 3.0 2.8 5.2 2.1 3.6 5.1 2.1 3.3 5.8 2.0 4.2 4.1 5.0 3.8 5.1 4.0 4.9 2.3 3.0 3.4 4.2 3.5 

B 26 3.7 2.2 4.5 4.8 5.4 4.1 2.2 1.7 3.1 5.0 2.2 3.6 2.9 2.7 4.1 3.8 4.3 4.9 2.9 4.2 5.9 2.2 5.1 4.1 4.2 3.8 4.1 2.9 5.1 2.8 3.5 3.7 4.1 3.8 

B 27 4.6 3.2 4.3 4.9 5.3 3.7 2.5 2.0 3.1 5.4 3.0 4.7 3.2 2.9 5.0 3.9 5.2 5.1 3.3 4.1 6.6 2.8 6.1 4.5 5.0 3.8 5.0 4.1 4.9 3.9 4.0 4.0 4.6 4.2 

B 28 2.9 1.7 4.8 5.3 6.5 5.7 2.3 2.7 4.3 5.5 1.8 3.6 3.7 3.2 4.9 3.9 4.2 6.2 2.9 5.1 7.0 1.9 5.1 4.8 5.2 5.1 5.0 3.2 6.9 2.2 3.7 4.2 4.8 4.3 

B 29 5.1 4.4 4.4 5.5 5.9 4.1 2.9 2.9 3.4 6.3 4.2 6.2 4.2 3.1 6.7 4.7 6.3 6.2 4.3 4.9 8.1 2.9 7.8 5.2 7.2 5.2 6.7 5.8 5.7 4.9 4.9 5.0 5.6 5.2 

B 30 3.5 2.5 2.2 2.8 3.2 2.3 1.7 2.0 2.7 3.9 2.0 4.2 2.2 2.5 4.5 1.7 4.0 3.7 2.0 2.1 4.9 2.7 4.2 3.7 3.8 2.1 4.4 4.1 3.1 3.2 2.8 2.8 3.6 3.1 
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 rbasis = coordinates for each item vector                         
 Subscales          Item Bank                Reference Form 

 A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C  Composite Scores 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 A B C All 

Dim 1 0.6 0.4 0.6 0.7 0.8 0.7 0.3 0.4 0.6 0.8 0.3 0.7 0.5 0.5 0.8 0.5 0.7 0.8 0.4 0.6 1.0 0.4 0.8 0.7 0.7 0.6 0.8 0.6 0.8 0.5 0.6 0.6 0.7 0.6 

Dim 2 0.0 -0.8 0.2 -0.1 0.2 0.5 0.0 0.1 1.0 0.2 -1.0 -0.2 -0.2 0.7 0.0 -0.8 -0.2 0.2 -0.7 -0.3 0.0 0.7 -0.8 0.6 -1.0 -0.7 0.0 -0.2 0.4 -0.5 -0.2 -0.2 0.2 -0.1 

Dim 3 1.0 0.4 0.1 0.0 -0.2 -0.6 0.2 -0.3 0.0 0.3 0.2 0.6 -0.2 0.3 0.2 -0.2 0.6 -0.3 0.0 -0.5 0.0 0.8 0.3 0.3 -0.4 -0.8 0.1 0.5 -0.6 0.7 0.2 -0.1 0.1 0.1 

Dim 4 0.0 -0.4 1.0 0.7 0.8 0.6 0.1 -0.4 0.0 0.2 -0.2 -0.6 0.0 -0.1 -0.7 0.8 -0.1 0.1 0.2 0.7 0.0 -0.3 0.0 -0.1 -0.4 0.3 -0.6 -1.0 0.6 -0.4 0.0 0.1 -0.1 0.0 
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Table 4:  Original Data to be re-analyzed using the anchored rbasis values given in the first four rows 

  Subscales          Item Bank                Reference Form 
  A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C  Composite Scores 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 A B C All 
  0.6 0.4 0.6 0.7 0.8 0.7 0.3 0.4 0.6 0.8 0.3 0.7 0.5 0.5 0.8 0.5 0.7 0.8 0.4 0.6 1.0 0.4 0.8 0.7 0.7 0.6 0.8 0.6 0.8 0.5 0.6 0.6 0.7 0.6 
  0.0 -0.8 0.2 -0.1 0.2 0.5 0.0 0.1 1.0 0.2 -1.0 -0.2 -0.2 0.7 0.0 -0.8 -0.2 0.2 -0.7 -0.3 0.0 0.7 -0.8 0.6 -1.0 -0.7 0.0 -0.2 0.4 -0.5 -0.2 -0.2 0.2 -0.1 
  1.0 0.4 0.1 0.0 -0.2 -0.6 0.2 -0.3 0.0 0.3 0.2 0.6 -0.2 0.3 0.2 -0.2 0.6 -0.3 0.0 -0.5 0.0 0.8 0.3 0.3 -0.4 -0.8 0.1 0.5 -0.6 0.7 0.2 -0.1 0.1 0.1 
Form 0.0 -0.4 1.0 0.7 0.8 0.6 0.1 -0.4 0.0 0.2 -0.2 -0.6 0.0 -0.1 -0.7 0.8 -0.1 0.1 0.2 0.7 0.0 -0.3 0.0 -0.1 -0.4 0.3 -0.6 -1.0 0.6 -0.4 0.0 0.1 -0.1 0.0 
A 1 6.0 3.0 6.0 6.0 7.0 5.0 3.0 2.0 5.0 7.0 2.0 5.0 3.0 4.0 5.0 4.0 6.0 6.0 3.0 5.0 . . . . . . . . . . . . . . 
A 2 2.0 2.0 4.0 4.0 5.0 4.0 2.0 2.0 3.0 4.0 2.0 3.0 3.0 2.0 4.0 4.0 3.0 5.0 3.0 4.0 . . . . . . . . . . . . . . 
A 3 3.0 3.0 2.0 3.0 3.0 3.0 2.0 3.0 3.0 4.0 2.0 5.0 3.0 2.0 5.0 2.0 4.0 4.0 2.0 3.0 . . . . . . . . . . . . . . 
A 4 5.0 3.0 4.0 4.0 5.0 3.0 2.0 2.0 3.0 5.0 3.0 5.0 3.0 3.0 5.0 3.0 5.0 5.0 3.0 3.0 . . . . . . . . . . . . . . 
A 5 4.0 2.0 3.0 3.0 3.0 2.0 2.0 1.0 3.0 4.0 2.0 4.0 2.0 3.0 4.0 2.0 4.0 3.0 2.0 2.0 . . . . . . . . . . . . . . 
A 6 3.0 4.0 3.0 4.0 4.0 2.0 2.0 2.0 1.0 4.0 4.0 4.0 3.0 1.0 4.0 4.0 4.0 4.0 4.0 4.0 . . . . . . . . . . . . . . 
A 7 4.0 3.0 3.0 4.0 5.0 4.0 2.0 3.0 4.0 5.0 2.0 5.0 3.0 4.0 6.0 2.0 5.0 6.0 2.0 3.0 . . . . . . . . . . . . . . 
A 8 5.0 2.0 6.0 6.0 7.0 6.0 3.0 2.0 5.0 7.0 2.0 5.0 4.0 4.0 5.0 4.0 6.0 6.0 3.0 5.0 . . . . . . . . . . . . . . 
A 9 5.0 4.0 5.0 6.0 6.0 4.0 3.0 2.0 3.0 6.0 4.0 5.0 4.0 3.0 5.0 5.0 6.0 5.0 4.0 5.0 . . . . . . . . . . . . . . 
A 10 5.0 3.0 4.0 5.0 6.0 5.0 3.0 4.0 6.0 7.0 2.0 6.0 4.0 5.0 8.0 2.0 6.0 7.0 3.0 4.0 . . . . . . . . . . . . . . 
A 11 3.0 3.0 2.0 3.0 4.0 3.0 2.0 2.0 2.0 4.0 3.0 5.0 3.0 2.0 5.0 3.0 4.0 4.0 3.0 3.0 . . . . . . . . . . . . . . 
A 12 4.0 3.0 4.0 5.0 5.0 4.0 2.0 2.0 2.0 5.0 3.0 4.0 3.0 2.0 5.0 5.0 5.0 5.0 4.0 5.0 . . . . . . . . . . . . . . 
A 13 5.0 2.0 6.0 6.0 7.0 5.0 3.0 2.0 4.0 6.0 2.0 4.0 3.0 4.0 5.0 4.0 5.0 6.0 3.0 5.0 . . . . . . . . . . . . . . 
A 14 4.0 2.0 4.0 5.0 6.0 5.0 2.0 3.0 5.0 6.0 2.0 5.0 3.0 4.0 6.0 3.0 5.0 6.0 3.0 4.0 . . . . . . . . . . . . . . 
A 15 5.0 4.0 5.0 6.0 6.0 4.0 3.0 2.0 3.0 6.0 4.0 5.0 4.0 3.0 6.0 5.0 6.0 6.0 4.0 5.0 . . . . . . . . . . . . . . 
B 16 . . . . . . . . . . 2.0 4.0 4.0 4.0 6.0 4.0 5.0 7.0 3.0 6.0 8.0 3.0 6.0 6.0 6.0 5.0 6.0 4.0 8.0 3.0 . . . . 
B 17 . . . . . . . . . . 3.0 4.0 4.0 3.0 5.0 4.0 5.0 6.0 3.0 5.0 7.0 2.0 6.0 5.0 6.0 5.0 5.0 4.0 6.0 3.0 . . . . 
B 18 . . . . . . . . . . 3.0 7.0 5.0 5.0 8.0 5.0 7.0 9.0 4.0 6.0 10.0 4.0 8.0 7.0 7.0 6.0 8.0 6.0 8.0 5.0 . . . . 
B 19 . . . . . . . . . . 3.0 3.0 3.0 2.0 4.0 3.0 4.0 4.0 3.0 4.0 5.0 1.0 5.0 3.0 5.0 4.0 4.0 3.0 4.0 3.0 . . . . 
B 20 . . . . . . . . . . 2.0 4.0 2.0 3.0 4.0 1.0 4.0 3.0 2.0 2.0 4.0 3.0 4.0 4.0 3.0 1.0 4.0 4.0 3.0 3.0 . . . . 
B 21 . . . . . . . . . . 3.0 4.0 3.0 2.0 4.0 5.0 5.0 5.0 4.0 4.0 6.0 2.0 6.0 4.0 5.0 4.0 4.0 3.0 5.0 3.0 . . . . 
B 22 . . . . . . . . . . 3.0 5.0 3.0 3.0 5.0 3.0 5.0 5.0 3.0 3.0 6.0 3.0 6.0 5.0 5.0 3.0 5.0 5.0 4.0 4.0 . . . . 
B 23 . . . . . . . . . . 3.0 6.0 3.0 3.0 6.0 3.0 6.0 5.0 3.0 3.0 7.0 4.0 6.0 5.0 5.0 3.0 6.0 5.0 4.0 5.0 . . . . 
B 24 . . . . . . . . . . 1.0 3.0 2.0 2.0 3.0 2.0 4.0 4.0 2.0 3.0 5.0 2.0 4.0 3.0 3.0 3.0 4.0 3.0 4.0 2.0 . . . . 
B 25 . . . . . . . . . . 2.0 4.0 3.0 3.0 5.0 2.0 4.0 5.0 2.0 3.0 6.0 2.0 4.0 4.0 5.0 4.0 5.0 4.0 5.0 2.0 . . . . 
B 26 . . . . . . . . . . 2.0 4.0 3.0 3.0 4.0 4.0 4.0 5.0 3.0 4.0 6.0 2.0 5.0 4.0 4.0 4.0 4.0 3.0 5.0 3.0 . . . . 
B 27 . . . . . . . . . . 3.0 5.0 3.0 3.0 5.0 4.0 5.0 5.0 3.0 4.0 7.0 3.0 6.0 4.0 5.0 4.0 5.0 4.0 5.0 4.0 . . . . 
B 28 . . . . . . . . . . 2.0 4.0 4.0 3.0 5.0 4.0 4.0 6.0 3.0 5.0 7.0 2.0 5.0 5.0 5.0 5.0 5.0 3.0 7.0 2.0 . . . . 
B 29 . . . . . . . . . . 4.0 6.0 4.0 3.0 7.0 5.0 6.0 6.0 4.0 5.0 8.0 3.0 8.0 5.0 7.0 5.0 7.0 6.0 6.0 5.0 . . . . 
B 30 . . . . . . . . . . 2.0 4.0 2.0 2.0 5.0 2.0 4.0 4.0 2.0 2.0 5.0 3.0 4.0 4.0 4.0 2.0 4.0 4.0 3.0 3.0 . . . . 
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Table 5:  Does the rbasis method of computing Reference Form measures work?  Yes. 

Reference Form composite scores computed using two 
different methods, r=0.98
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IMPLICATIONS 

By being able to predict missing cells by locating persons and items in an objective 
multidimensional space, NOUS enables a wide variety of new equating designs.  One such design 
was presented in this paper.  Other equating designs include: 

• Multidimensional Computer Adaptive Testing.  Instead of storing 1-dimensional item 
parameters, the CAT algorithm would store the full D-dimensional profile of each item 
to students.  This profile would make it possible to compute the student’s probability of 
success on each item as well as locate that student most efficiently in that space. 

• Benchmark Equating.  Currently, little is being done to equate the benchmark exams 
that are at the center of formative assessments administered at the district level, largely 
due to their multidimensional complexity over time.  NOUS offers several equating 
designs that would make it possible to measure student growth within and across grades 
on any number of diagnostic variables simultaneously.  It even makes it possible to 
equate exams over time without common items – a complex topic for another paper. 

In addition, by allowing rigorous control of multidimensional data sets, NOUS invites test writers to 
design richer tests to capture a broader array of educational standards without sacrificing 
comparability across test forms and administrations.  It raises afresh the possibility of true vertical 
equating.  Vertical equating has traditionally been hampered by the fact that many educational 
content areas (history and science, for example) do not lie within a well-defined unidimensional 
construct but lurch from dimension to dimension across the grades.  By erecting a multidimensional 
space and a Reference Form that includes all these dimensions, either aggregated or broken out by 
individual contents, it is theoretically possible to track movement through that space solely in terms 
of predicted performance on the Reference Form, regardless of changes in content across grades.  
The practical challenge is making sure that every test form contains the same dimensionality as the 
Reference Form. 

 In light of these findings, there seems to be some justification for pursuing the implications of 
NOUS-based equating models. 
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