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ABSTRACT 

Given the variety of languages, cultures, and curricular priorities across APEC countries, it would 
seem difficult to unite around a common set of teaching and learning standards for purposes of 
international communication.  Yet the nascent field of “psychometrics” offers practical solutions to 
such problems by its ability to “equate” tests that differ in difficulty and even content, and by its 
ability to set standards that have the same meaning across tests and countries.  After summarizing the 
principles behind classical and modern educational measurement, the paper discusses several 
technologies that can make it possible for APEC countries to jump the language barrier without 
sacrificing local imperatives.  These technologies include:  local, national and international item 
banks, computer adaptive testing, and the Lexile framework. 
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THE PROBLEM 

It need hardly be said that the ability to conduct business and interact socially across national 
boundaries requires a common language, a fact nowhere more apparent than in the 13 exceedingly 
diverse economies that make up the APEC.  By accident of historical and geographic circumstance, 
the de facto common language appears to be English, though other languages are used to bind 
together smaller subsets of the Pacific rim.  APEC members, naturally, seek ways to make 
communication in English across national boundaries more easy and reliable than it is now.  I wish in 
this paper to discuss ways to make the process more straightforward using tools from the educational 
measurement world.  I will explain where these tools came from, how they work, and what they can 
be used for. 

In order to conduct business across national, cultural, and economic borders, employers and 
academic institutions are obliged to work with individuals who have demonstrated an acceptable level 
of fluency in an international language such as English.  That means applicants need to be tested and 
their fluency quantified on an English fluency scale.  The scale must be applicable to the four 
domains of language– Reading, Writing, Listening, and Speaking.  The scale must include one or 
more cut-points or passing grades above which it is reasonable to believe that an individual is 
acceptably fluent in a specified domain.  The Test of English as a Foreign Language (TOEFL) and 
the Test of English for International Communication (TOEIC), both products of U.S.-based 
Educational Testing Service (ETS), seek to fill this need in the academic and business realms, as does 
the International English Language Testing System (IELTS) based in Cambridge, England. 

In theory, such tests would be sufficient to meet the English language assessment needs of the 
APEC.  It is becoming clear that they are not: 

1. There is a limited number of seats and testing dates available at test centers.  Demand 
exceeds supply. 

2. Each test is on its own scale.  That means it is not possible to compare the score of a 
person who has taken the TOEFL, say, with the score of person who has taken another 
test, such as the IELTS or one of the national exams.   

3. The TOEFL and TOEIC and their language scales are proprietary to ETS.  Therefore, 
only ETS can increase the availability of tests that use those scales.  While another 
company or a government agency can administer its own tests, such tests would be on a 
different scale and not comparable to the ETS tests. 

4. These tests are given only to adults.  They are not suitable for testing the fluency of 
children in the lower grades.  Countries need to keep track of student growth in the 
lower grades and have no simple way to match student performance in lower grades 
with expected performance on one of the adult English fluency tests. 

5. Aside from a few international tests like the TOEFL and the IELTS, English testing is 
largely a national affair.  Because the separately developed tests of the individual APEC 
economies are not matched to each other – equated – it is impossible to know the 
relative English fluencies of examinees who take different tests. 
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6. This also means there is no single set of standards that is applied uniformly across 
APEC to students, and especially teachers, of English as a foreign language. 

These and similar considerations lead me to believe that APEC countries will eventually need to 
rethink the English assessment problem from first principles and develop, jointly, a more robust and 
generalizable methodology than what is used today.  Fortunately, there are straightforward solutions 
to many, if not all, of the issues raised above using tools that are either currently available, or that will 
become available over the next five years.   I am thinking of such tools as: 

• Test equating 

• Item banking 

• Computer adaptive testing (CAT) 

• The Lexile scale 

To understand these tools it is necessary to review a bit of the history of educational measurement as 
regards the problem of test equating. 

CLASSICAL TEST THEORY – THE SAME TEST FOR EVERYBODY 

In the old days (pre-1980, say, though Classical Test Theory is still widely used) the solution was 
simple.  Administer the same test to everybody and compare their scores on some agreed upon 
metric.  This comparison involved calculating how each student performs relative to the rest of the 
students who take the test.  This could be done with percentiles – what percent of students score less 
than Student X – or with some other way of locating the relative position of Student X in the overall 
distribution of scores, such as standard deviation units or normal curve equivalents. 

(A “score distribution” is – ideally – a bell-shaped curve reporting how many students receive a 
given score for each point on the scale.  The “mode” of the distribution is the score that most 
students receive and tends to be near the center of the distribution.  The “mean” of the distribution 
is the average score, usually pretty close to the mode.  The “standard deviation” of the distribution is 
the average distance from the mean.  When a distribution of student scores is described in standard 
deviation units, the mean score is assigned a value of 0.0 standard deviation units.  A value of 1.0 
means one standard deviation unit above the mean, and a value of -1.0 means one standard deviation 
below the mean.  If Student X’s score is 1.5, that means he scored one and a half standard deviations 
above the average score for that population of students.  Often, the standard deviation unit is 
converted into some equivalent unit that is deemed more user-friendly.  For instance, the famous 
Intelligence Quotient (IQ) evolved so that a score of 100 refers to the mean or average of the test 
population, and 15 points above and below, 115 and 85, refer to one standard deviation above and 
below the mean.) 

Classical test theory works so long as several assumptions are met: 

1. Same test.  Everybody takes the same test, the same set of questions, generally called 
"items."  Students who leave an item blank either have to be dropped from the test or 
given a zero for that item, or someone needs to guess how the student would have 
answered the item.  Statistical analysis is performed at the level of the total test score.  
Scores on individual items (“right” or “wrong”) do not play much of a role. 
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2. Representative examinee samples.  The distribution of scores for a sample of examinees 
should be representative of what one would obtain if every student in the total 
population of all possible students were tested using the same test.  The larger the 
sample of students the more likely the sample is to be “representative” though this is by 
no means assured unless examinees are picked at random.  Therefore, classical test 
theory works best with large samples of students, at least above a thousand and 
preferably in the tens of thousands. 

3. Representative items.  In a manner parallel to students, we assume that the items are 
representative of the population of all possible items for a given content area. 

4. Common person equating.  To compare the relative difficulty of two tests, we need a 
representative sample of students to take both tests.  Using one of several methods, we 
adjust the scores on one test to equal the scores on the other test.  The function used to 
perform this adjustment becomes the equating function. 

I want to call your attention to two things in particular.  First, in classical test theory the student 
measures depend on the items they happen to take, and the item measures (how difficult they are) 
depend on the students who happen to take the exam.  There is no guarantee that if the same set of 
students were given a different set of items they would get the same relative scores.  That is why it is 
so important that the items be “representative” of the content matter for every test aimed at that 
content.  The term for this is that both the student measures and the item measures in classical test 
theory are “sample dependent.” 

Second, classical test theory has no way to address the problem of missing data.  This may not 
sound important since most students answer all the items on a test, but it is the central limitation of 
classical test theory.  Many of the interesting psychometric problems are missing data problems.  
Most test equating tasks involve large blocks of missing data, as does computer adaptive testing 
(CAT).  More complicated measurement designs that take into account rater severity, for example, 
are completely impractical without a way to handle missing data. 

Third, classical test theory has no way to assess the quality of individual student responses, their 
internal consistency.  Each set of responses assigned to a particular person or item is assumed to be 
as good as any other set of responses. 

It was not long before several theoreticians (Fred Lord, Georg Rasch, Ben Wright) decided these 
and other limitations were impractical and unnecessary, especially when it came to equating tests for 
different age groups of students.  Rasch in particular, and his student Ben Wright, discerned the 
fundamental weakness of classical test theory and derived from first principles a new model of 
psychological measurement that, if applied according to its specifications, would grant the 
measurement of psychological and educational quantities the same status as the measurement of 
physical quantities in physics.  This measurement model became known as the Rasch model.  In the 
1960’s, the Rasch model and related models became the basis of a field known as Item Response 
Theory.  Despite decades of published research, these models only took hold in the educational 
testing arena in the 1990’s.  It is the Rasch model that makes most of what I am going to discuss 
possible. 

ITEM RESPONSE THEORY – TEST LINKING 

Stated simply, Item Response Theory uses probability models to calculate the probability that an 
examinee will get a specific item correct.  It does this by counting all the correct responses associated 
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with that examinee (ability) and all the incorrect responses associated with that item (difficulty), and 
adjusting the examinee abilities and item difficulties until the fit between the observed values and the 
model’s predictions has been maximized.  The general form of IRT models is: 

Probability of a Correct Response = function (Person Ability – Item Difficulty) 

This is the simplest form of the model; many complex variations have been derived.  Within the 
IRT community, there has been a difference in philosophy between advocates of the Rasch model, 
which relies on a simple additive function that relates person ability to item difficulty, and other 
models such as the “3-PL model” which include parameters that take into account “item 
discrimination” and “guessing” to improve the fit between the observed responses and the 
corresponding values predicted by the model.  The debate has largely run its course, but the upshot is 
that the more complex models like the 3-PL model do a better job of producing estimates that match 
the observed data for a specific test, whereas the Rasch model does a better job of computing person 
abilities and item difficulties that generalize across multiple tests, so long as the data set is “edited” 
using diagnostic statistics to maximize fit between the observed responses and predicted values.  The 
difference is often summarized as:  The 3-PL model fits the model to the data; the Rasch model fits 
the data to the model. 

From an outside perspective the difference seems academic.  Philosophically, the difference is 
profound and it has enabled the Rasch model to develop in directions that the 3-PL model has not.  
For instance, the Rasch model can be extended to take into account rater severity and any number of 
other factors impacting scores, as in the “Many-Facet Rasch Model,” whereas models like the 3-PL 
model become mathematically intractable in such circumstances.  The distinguishing characteristic of 
the Rasch model is that it specifies the unique condition under which item differences can be 
disentangled or “separated” from person differences, so that persons will receive the same relative 
ability measures regardless of the items they take, and items will receive the same relative difficulty 
measures regardless of the persons who take them.  Unlike Classical Test Theory which is “sample 
dependent,” Rasch models are “sample free.”   

There is, of course, a price to be paid for the Rasch model’s “sample free” property.  It is not 
achieved simply by running any set of test data through a computer program.  The items have to be 
carefully written and studied to ensure that they match a clearly understood and defined construct 
and are not biased for or against any subset of examinees.  Not any set of items will do.  Instances in 
which there is a significant difference between the model’s predictions and the observed responses 
(called “misfit”) need to be understood and the test altered accordingly.  Misfitting persons are 
suspended from the analysis temporarily when calibrating item difficulties.  Misfitting items are 
dropped.  Fortunately, because the Rasch and other IRT models are not compromised by missing 
data, it is straightforward to drop misfitting persons and items from the analysis and run the program 
without them. 

TEST EQUATING 

I just stated a very important point.  Unlike Classical Test Theory, IRT models can handle missing 
data.  Remember, IRT models calculate the probability that a given person will get a given item 
correct.  This applies both in cases where we have a response for the person on that item, and in 
instances where a person did not answer an item.  Thus, IRT automatically completes any test data 
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matrix with “expected values,” filling in missing values as desired.1  That is what makes test equating 
so straightforward with something like the Rasch model and so hard with Classical Test Theory.   

Figure 1 is a (highly idealized) example of a typical equating problem.  The rows are test 
examinees (persons) arranged in order of English fluency.  The columns are test items arranged in 
order of difficulty.  The zeros and ones indicate whether a given person got an item correct (“1” 
means “correct”).  There are two tests.  Test X contains items 1-5 and may be considered an easy 
test.  Test Y contains items 4-12 and may be considered a hard test.  Items 4 and 5 appear on both 
tests.  No persons took both tests.  The “% Correct” column gives the percentage of items each 
person got correct.  The “% Incorrect” row at the bottom gives the percentage of persons who got 
each item incorrect. 

Here is my item to you:  Which examinee is more fluent, Person A or Person G? 

Figure 1 

   Easy  [Test X]  Questions  [Test Y]  Difficult  

   1 2 3 4 5 6 7 8 9 10 11 12 
% 

Correct
Less  A 0 0 1 1 0 . . . . . . . 0.40 

Fluent B 1 0 1 0 0 . . . . . . . 0.40 
  C 0 1 0 0 1 . . . . . . . 0.40 
  D 1 1 1 1 0 . . . . . . . 0.80 
  E 0 1 1 0 0 . . . . . . . 0.40 
  F 1 1 1 0 0 . . . . . . . 0.60 
Persons G . . . 1 0 0 1 1 0 0 0 0 0.33 

  H . . . 1 0 1 0 1 1 1 0 0 0.56 
  I . . . 1 1 0 1 1 0 0 0 0 0.44 
  J . . . 1 1 1 1 1 1 1 0 1 0.89 
  K . . . 1 1 1 0 0 0 1 1 0 0.56 
More L . . . 1 1 0 1 1 1 1 0 1 0.78 
Fluent M . . . 1 1 1 0 1 1 1 1 1 0.89 

  
% 

Incorrect 0.50 0.33 0.17 0.31 0.54 0.43 0.43 0.14 0.43 0.29 0.71 0.57  
 

If we naively used Classical Test Theory, we would assume that both sets of items (Test X and 
Test Y) are equally representative of the total population of test items, and that therefore we can 
compare Persons A and G in terms of their scores.  Person G gets a lower percent correct (0.33) 
than Person A (0.40), so Person A  is more fluent. 

If we were less naïve we would concede the obvious, that the two tests have mostly different 
items and that their scores cannot be compared to each other.  Since there are no persons who took 
both tests, our only recourse is to pay for an equating study and give both tests to a representative 
                                                      
1 This statement is an oversimplification.  IRT models use algorithms that calculate person and item 
parameters without filling in missing data.  However, they have the capacity to fill in missing data if 
desired and it is instructive and valid to interpret IRT models as tools for filling in missing data. 
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sample of persons and use the average difference in performance between the two tests to calculate 
their relative difficulty. 

Or, we could just run the data set through the Rasch model and fill in the missing cells with 
expected values, then calculate a new percent correct as the average of the observed and expected 
values for each row (Figure 2).2 

Figure 2 

   Easy  [Test X]  Questions  [Test Y]  Difficult  

   1 2 3 4 5 6 7 8 9 10 11 12 
% 

Correct
Less  A 0 0 1 1 0 0.26 0.22 0.17 0.13 0.09 0.04 0.00 0.24 

Fluent B 1 0 1 0 0 0.30 0.26 0.22 0.17 0.13 0.09 0.04 0.27 
  C 0 1 0 0 1 0.35 0.30 0.26 0.22 0.17 0.13 0.09 0.29 
  D 1 1 1 1 0 0.39 0.35 0.30 0.26 0.22 0.17 0.13 0.49 
  E 0 1 1 0 0 0.43 0.39 0.35 0.30 0.26 0.22 0.17 0.34 
  F 1 1 1 0 0 0.48 0.43 0.39 0.35 0.30 0.26 0.22 0.45 
Persons G 0.74 0.70 0.65 1 0 0 1 1 0 0 0 0 0.42 

  H 0.78 0.74 0.70 1 0 1 0 1 1 1 0 0 0.60 
  I 0.83 0.78 0.74 1 1 0 1 1 0 0 0 0 0.53 
  J 0.87 0.83 0.78 1 1 1 1 1 1 1 0 1 0.87 
  K 0.91 0.87 0.83 1 1 1 0 0 0 1 1 0 0.63 
More L 0.96 0.91 0.87 1 1 0 1 1 1 1 0 1 0.81 
Fluent M 1.00 0.96 0.91 1 1 1 0 1 1 1 1 1 0.91 

  
% 

Incorrect 0.30 0.25 0.19 0.31 0.54 0.52 0.54 0.41 0.58 0.53 0.78 0.72  
 

Having filled in the missing cells, we can now say that all the examinees, Persons A-M, have in 
effect taken the same test, a combination test called XY.  It is now valid to compare their scores.  
When we compare Persons A and G, we see that Person G is almost twice as fluent as Person A – 
0.42 percent correct versus 0.22 percent correct.  The naïve use of Classical Test Theory was not just 
a little wrong, but spectacularly wrong. 

This example yields three important rules: 

1. Valid Comparisons.  Examinees can only legitimately be compared when they can be 
said, either literally or theoretically, to have taken the same test. 

2. Definition of Equating.  Two tests X and Y are equated when from the responses on X 
and the responses on Y it is possible to infer the responses and total score that students 
would have received on a common test XY composed of the items from both tests. 

                                                      
2 So called “expected values” are in this case the same as probabilities, the probability of getting a 
“1”.  They are more precise than observed values because they take into account all the data in the 
matrix.  For purposes of illustration I am mixing observed and expected values in the “% Correct” 
column, but this is not what IRT algorithms do. 
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3. Test Linking.  In order to infer responses on one test based on another, the tests must 
somehow be linked.  There are three ways to link two tests X and Y: 

a. Common Persons.  Tests X and Y must be administered, in their entirety, to a 
common sample of persons at more or less the same time.  This is called 
common-person equating and is the only way to equate using Classical Test 
Theory. 

b. Common Items.  Tests X and Y must have items in common.  This is called 
common-item equating.  Figures 1 and 2 show common item equating (Items 4 
and 5 are on both tests) but not common person equating (no persons took 
both tests completely). 

c. Common objective characteristics.  Tests X and Y must have “objective 
characteristics” in common.  There must be some way to infer from the test 
questions themselves their likely difficulty without recourse to person 
responses.  This third type of equating is rarely noted but is the foundation of 
the Lexile scale, as discussed below. 

A FEW TECHNICAL CLARIFICATIONS 

To avoid misconceptions, let me point out that IRT software does not actually compute the 
expected values for missing cells, nor does it average observed values and expected values.  It arrives 
at similar person and item parameters (closely analogous to “percent correct”) by way of a more 
efficient algorithm, called Joint Maximum Likelihood.  Once the person and item parameters have 
been derived, they can be used to estimate the missing values if desired.  If one averages across the 
expected values for all cells in a row or column, they will closely approximate a simple function of 
the person and item parameters calculated using Joint Maximum Likelihood.  IRT software does 
calculate expected values for each cell that contains an observed value.  It adjusts the person and item 
parameters until the expected values are as close as possible to, or best “fit,” the observed values, 
given the mathematical constraints of the model. 

I did not use the Rasch model to compute the expected values in this example but used 
theoretical values for illustrative purposes only.  However, they are similar to what Rasch expected 
values would look like. 

Psychometricians do not work in a “% correct” metric but in what is called a “logit” metric.  
Because percentages cannot exceed 100 or go below zero, percentage units are not all the same size 
and cannot be added and subtracted like regular measures.  To convert percentage units into units 
that all have the same size, we divide the percent correct by the percent incorrect (called the odds of 
success), then take the log of the odds so that measures can be compared by adding and subtracting 
rather than by multiplying and dividing.  The result is a “logit,” short for “log odds unit.”  Logits 
range from negative infinity to positive infinity (though for most tests they range from around -4 to 
+4) and are centered at zero. 

Finally, the idealized data set above includes “random error” (a random number added to each 
data value before rounding to 0 or 1).  That is why items that I know to be more difficult (because I 
generated this pseudo-data set) can sometimes appear to be less difficult.  Error is intrinsic to all 
measurement and is explicitly modeled and calculated by the Rasch model.  It is also why IRT 
models are probability models.  We are not predicting an actual value of “1” or “0”; we are 
calculating the probability that an examinee will get a “1”. 



 

 9

Simple as they are, Figures 1 and 2 capture the important contribution made by IRT to 
measurement theory.  Almost all measurement and equating problems can be reduced to this 
example. 

ITEM RESPONSE THEORY REQUIRES UNIDIMENSIONALITY 

Classical Test Theory, unlike IRT, does not require that all items on a test measure along a single 
educational construct, just that they somehow be “representative” of a specified domain.  The Rasch 
model requires that test items measure along a single clearly defined “dimension,” and no more than 
one dimension at a time.  This is called the requirement of “unidimensionality.”  A math test should 
contain only math items.  An English test should contain only English items.  While it is up to test 
designers to be clear what they want to measure and to target their items accordingly, it is the model 
itself that will tell them whether they succeeded.  When the observed responses associated with a 
particular item differ significantly from what the model predicts for those cells, it is likely that the 
item is sensitive to a dimension that was not the intended construct or dimension of the test.  

The classic example is when a mathematically competent examinee fails to solve a simple word 
problem because it is written in an unfamiliar language.  While the test is targeted on mathematics 
and generally succeeds in detecting math ability, for the word problem it behaves a bit like an English 
test.  Rasch diagnostic statistics would inform test developers either to drop the word problem or to 
administer the test only to examinees who can understand the language in which the test is written.  
When test developers ignore these diagnostics, they are sacrificing the most important property of 
Rasch models, namely, the capacity to create measures that can generalize to other tests, sometimes 
called “objectivity” or “invariance.”  In this case, a mathematically competent examinee is given a 
lower test score merely as a result of a language issue that has nothing to do with his math ability.  
We say, the test is not “objective,” contains “biases.”  Rasch fit statistics are used to identify and 
remove such biased items. 

Figure 1 does not look like a unidimensional data set, but it is.  Random error and the capture of 
data only as zeros and ones obscures the underlying unidimensional structure, but one can see that 
the more difficult items have more zeros while the more able students have more ones, and that the 
expected values are perfectly correlated to each other, column to column.  What does one do when 
the underlying structure is more complex, more multidimensional? 

MULTIDIMENSIONAL ITEM RESPONSE THEORY  

The requirement of unidimensionality imposes a salutary discipline on item writers and forces 
clarity of thought while identifying items that are not likely to yield generalizable measures.  It must 
nonetheless be recognized that there are instances – many instances -- when educational and 
psychological data sets are highly and intrinsically multidimensional and the Rasch model is unable to 
make sense out of them and should not be used.  Psychological profiling for marketing purposes is a 
typical example.  This problem has lead to the development of so-called “Multidimensional IRT” 
(MIRT).  In the context of our discussion on test equating, a MIRT model would, or should, allow us 
to predict the missing cells in data sets like Figure 1 

Although IRT does offer models that are called “multidimensional,” the MIRT subfield is still in 
an early and relatively disordered stage of development despite models that have been in existence 
since the 1970s.  For whatever reason, the models are poorly understood and software is hard to find 
and use.  In this regard, the field of “data mining” has taken the lead in implementing methodologies 
and software to analyze multidimensional data sets.  It is not yet clear that existing MIRT models or 
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those used in advanced data mining do for multidimensional spaces what the Rasch model does for 
1-dimensional spaces. 3  If such a model did, it would have the following properties: 

1. Fit multidimensional data.  It should produce cell estimates that reasonably fit the 
observed values even though the items are not all measuring along the same dimension 
or construct and are to varying degrees uncorrelated, i.e., the data set is 
multidimensional. 

2. Predict missing values.  It should accurately predict the values of missing cells, regardless 
of whether they are randomly missing (the student forgot to answer) or missing by 
design (as in test equating). 

3. Person invariance.  It should locate persons in space such that their relative positions 
remain the same regardless of the sample of items they answer, assuming that each 
sample of items erects the same space. 

4. Item invariance.  It should locate items in the same space as the persons, and the relative 
positions of the items should stay the same regardless of the sample of persons that 
responds to the items. 

5. Misfit when invariance is not achieved.  When person responses to particular item vary 
due to the influence of dimensions that are not embodied in the remaining items on the 
test, that person’s observed responses should on average be significantly different from 
the values predicted for the same items.  In other words, the model’s predictions and 
the observed values should disagree.  The same applies to the response associated with 
a given item. 

6. Transferability.  Person and item parameters should be transferrable across data sets of 
the same kind, so that the results of one analysis can be applied to another. 

7. Maximal use of information.  The model estimate corresponding to each cell in the data 
matrix should to the maximum extent possible use all the information in the entire data 
set and be correspondingly precise. 

8. Standard errors.  Each cell estimate – how a person is expected to score on an item – 
should be accompanied by its own standard error, and that standard error should 
accurately reflects the range of estimates that is likely to be produced with different 
samples of persons and items drawn from data sets with the same dimensionality and 
sample size.  Person and item parameters should also have standard errors. 

While practical multidimensional test-equating software meeting these requirements appears to 
be years in the future, there can be little doubt that multidimensional IRT will become the preferred 
methodology for equating tests. 

                                                      
3 The author and colleagues have developed multidimensional models under the rubric of NOUS 
that model highly multidimensional data sets and generate parameters that can be generalized across 
data sets.  These models have proven useful with educational data.  However, they are not complete 
or available and have not been widely reviewed.  For more information, visit www.eddata.com.  
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TOOLS RELEVANT TO APEC 

IRT, and the Rasch model in particular, has spawned an array of tools that are highly relevant to 
APEC’s problem of establishing a common international scale with international standards.  All of 
these tools can be understood as variations on the theme of equating posed in Figures 1 and 2. 

EQUATING THROUGH AN INTERNATIONAL ITEM BANK 

The idealized data set in Figure 1 has 12 items.  Imagine there were 12,000 items or more.  
Obviously no single student would take all 12,000 items, but if groups of examinees were 
administered different overlapping sets of items it is conceivable we could construct a data set that 
would be appropriately linked through common items.  Then we could run the data set through a 
Rasch software program and calculate the difficulty of each item, dropping items that do not fit.  The 
remaining set of items, with their difficulty measures, would be what is called an “item bank.” 

Item banks have been used very successfully for decades by such organizations as the Northwest 
Evaluation Association (NWEA).  They make it possible to create any test on the fly, for any 
occasion.  Items are selected for their difficulty and appropriateness, assembled onto a test form, and 
administered by paper or computer, or online.  Because the item difficulties are calculated ahead of 
time, it is easy to compute each examinee’s expected score, roughly equivalent to what they would 
have received had they taken the entire 12,000 item test (though the level of precision reflects only 
the number of items actually taken).  All examinees are measured on the same common scale.  
Building an item bank involves:  a) writing the test items, somewhere above 12,000, preferably 
30,000; b) constructing a database to manage the items and assemble them on tests; c) gathering data 
on the items through overlapping test administrations; and d) removing items that behave 
inconsistently. 

While item banks take some work, they have many benefits: 

1. Different tests, a common scale.  All examinees are placed on a common scale, 
regardless of the test they take.  Each APEC nation could assemble and administer its 
own tests, yet place examinees on a common international language fluency scale. 

2. Test Security.  Because there are so many test items, it is unlikely that any one person 
could prepare for them, even if the person somehow gained access to the item bank.  
The accidental exposure of items from a particular test can easily be corrected by 
drawing a new set of items from the bank and retiring the exposed items for a few years. 

3. Test All Grades.  Because any set of items can be selected from the item bank, items can 
be targeted to any grade of students and any ability level.  Examinees in Grade 3 can be 
compared to students who take the TOEFL. 

4. Include Non-Bank Items.  It is easy to include new items on the test that are not already 
in the item bank.  These items can be analyzed after the test administration and added to 
the international item bank if they are of sufficient quality.  This makes it easy to grow 
the item bank. 

5. Freedom of Use.  An international item bank would free APEC member countries from 
having to rely exclusively on private companies such as the publishers of the TOEFL 
and TOEIC. 
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The construction of item banks to test Reading is straightforward and is done routinely.  It 
would not be hard to construct an item bank to test Listening.  However, Writing and Speaking 
present technical challenges that complicate item banking.  The challenges are not insurmountable, 
however. 

COMPUTER ADAPTIVE TESTING 

Another benefit of a large international item bank is that it would enable member countries to 
employ computer adaptive testing (CAT).  The principle is simple:  the examinee is administered a 
sample of range-finder questions that yield an approximate starting ability.  The computer looks in 
the item bank for a suitable item that is targeted to the examinee’s starting ability.  If the examinee 
gets the item correct, he is given a harder item.  Otherwise, he is given an easier item.  The 
examinee’s ability is recomputed after each item.  After 20 items or so, the computer “homes in” on 
the student’s ability to any desired degree of accuracy.   Such scores tend to be much more precise and 
reliable than scores from a paper test since paper tests, by being inflexible, tend to be poorly targeted 
on a large percentage of examinees. 

To be successful, CAT requires a large bank of carefully screened items, more than 1000 items 
per content area -- as many as possible.  It is important that items not be over-exposed to examinees, 
that they range across the entire difficulty scale so that high- and low-ability examinees have as many 
items targeted to them as mid-range students.  It is especially important that the items be carefully 
examined for their fit to the Rasch model.  CAT only works if the items can be trusted to have 
constant and reliable difficulties, invariant across examinee types. 

ETS abandoned its CAT program for scoring the TOEFL for undisclosed reasons.  However, 
other companies and testing agencies have been successful with CAT in high-stakes certification 
exams over many years.4  The methodology is sound and well proven, if properly applied. 

In the language fluency domain, the application of CAT requires that a computer be able to 
score an examinee’s responses on the fly.  This is easily done with Reading and Listening (though 
Listening items require ear-phones and a microphone).  Writing and Speaking are more challenging.  
Technology has been developed by a number of companies, including ETS, that machine-scores 
writing samples with a level of precision that is comparable to that of human scorers.  I have little 
doubt that such technologies will come to dominate the writing-scoring industry.  However, I have 
not seen any efforts to integrate this technology with computer adaptive testing.  Speaking is even 
harder to score, but could theoretically be managed with recent voice recognition technologies.  
Again, I have not seen these attempted in the context of adaptive testing. 

THE LEXILE SCALE 

The Lexile scale was constructed by a U.S. company called MetaMetrics in North Carolina (with 
which I have no business relationship).5  It relates reading difficulty, as assessed using test data 
analyzed with the Rasch model, to "objective characteristics" of the reading items.  Most reading 
comprehension items involve reading a passage of text.  It was found that the average difficulty of 
items relating to that text can to a large extent be predicted by looking at the semantic difficulty and 
                                                      
4 The National Council of State Boards of Nursing offers the NCLEX computer adaptive exam to 
certify nurses.  Go to www.ncsbn.org.   The highly regarded Norwest Evaluation Association 
(NWEA) has shifted entirely to a computer adaptive format for its K-11 English and Mathematics 
tests. 
5 Go to www.metametricsinc.com or www.lexile.com and related links for information about the 
Lexile framework. 
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syntactic complexity of the text to be read, variables that can be operationalized using log 
transformations of word frequency (how frequently each word is used in the English language) and 
sentence length (the number of words in a sentence).  Their relationship to item and test difficulty 
were used to construct a regression equation that makes it possible to predict the difficulty of a 
passage of text simply by looking at these two objective characteristics.  A software program called 
the Lexile Analyzer was written to scan and analyze text and return the reading difficulty of that text 
on a scale called the Lexile scale.  When a person reads text that is at that person's location on the 
Lexile scale, it means he is expected to answer 75% of hypothetical questions based on that text 
accurately.  The Lexile scale is used widely to assess the readability of text, and many large-scale 
assessments include a Lexile score for each student who takes the test.  This Lexile score is used to 
guide teachers and parents in selecting texts that are at the right difficulty level for that student. 

I raise the Lexile scale because it may offer the easiest and least expensive means of equating 
Reading (and Writing) tests in the APEC economies.  Instead of writing items and building item 
banks, participating testing agencies within the APEC would submit test materials to MetaMetrics for 
scanning and obtain Lexile measures for their materials along with information on how to calculate 
Lexile scores for examinees who take the test.  The Lexile framework would become a de facto 
English fluency scale for APEC countries.  The strategy offers a number of attractive benefits: 

• Easy, inexpensive, and flexible.  The work of scaling existing tests used in APEC 
countries would be minimal.  All such tests would automatically be equated to each 
other since they report results on the same scale.  New tests can be added to the Lexile 
framework without the effort of writing linking items or performing equating studies. 

• Usable by teachers.  The scale has been applied to a large corpus of texts.  English 
instructors would have automatic access to a powerful tool for matching their curricular 
materials to student ability at all grade levels, including adults. 

• Performance standards.  Setting international performance standards becomes 
straightforward.  The task of defining performance levels for different levels of English 
proficiency (for students, adults, and teachers) is greatly simplified by the fact that so 
much Lexiled data has been accumulated.  Exams, texts, functional tasks, and various 
educational criteria can already be found on the scale.  Existing performance scales such 
as those used on exams in APEC countries, or the Common European Framework of 
Reference for Languages, can be placed on the scale without undue difficulty. 

• Wide applicability.  TOEIC measures business language skills; TOEFL measures 
academic language skills.  Each requires its own items and its own scale.  However, both 
a business language test and an academic language test could be scaled to report in 
Lexiles – even though the constructs are different.  All that is necessary is that the 
appropriate qualifications be added to each score.  Thus, we would say based on his 
results on two tests that Examinee X has a Reading ability of 900 Lexiles in business 
English and a Reading ability of 800 Lexiles in academic English.  He might have 
different (generally lower) Lexile scores for Writing. 

• Transparency.  Although developed and marketed privately, the Lexile scale is based on 
objective test characteristics that can be independently verified and replicated.  This 
allows the framework to extend beyond any single exam or set of curricular materials.  
In this sense it differs markedly from the closed, proprietary scales that tend to be used 
for international assessments such as the TOEFL.   
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• Stability.  The stability of the scales used for proprietary assessments depends on a wide 
variety of factors involving the selection, use, and removal of test items from tests over 
time.  A scale based on objective characteristics like sentence length and word frequency 
is much more likely to retain its stability over many years, even as individual tests go in 
and out of use. 

There are at least two psychometric challenges posed by the Lexile scale that would have to be 
solved: 

• Listening and Speaking.  So far, MetaMetrics does not appear to be offering a way to 
convert responses to Listening and Speaking tests into Lexiles.  The problem does not 
seem to be insurmountable, however, and may in fact prove quite simple. 

• English and Spanish.  The Lexile scale has only been constructed for English and 
Spanish, so far as I know.  It can in theory be developed for any language, including the 
Asian languages, but the process would require substantial time and research.  

I attach a much reduced picture of a poster used to explain the Lexile scale, downloaded from the 
website for the State of Illinois.6  Developed by MetaMetrics, it provides an excellent overview of 
how the scale works.  Each band, moving from the bottom to the top, represents a Lexile range in 
increments of 100.  The left column provides a list of works of literature for each band of the scale.  
The column in the center provides an actual sample of text from one of these works.  The column to 
the right lists assessments and curricular materials that have been assigned to that Lexile band.  (Note 
that the TOEFL has been measured at 1400L.) 

CONCLUSION 

The problem of establishing a common scale and common language standards for the APEC 
economies – particularly as regards the learning, teaching, and use of English – is eminently solvable.  
Psychometric tools developed over the last 40 years in response to the need to equate tests – to place 
students on a common scale despite being assessed with different instruments – offer powerful and 
practical ways to equate tests used in APEC countries and to increase the range of options available 
to national testing agencies and companies and organizations that need quick and reliable ways to 
assess foreign language fluency.  These tools include item banks, computer adaptive testing, and the 
Lexile scale.  They are well worth researching further in addressing this important issue.  

                                                      
6   A more readable version can be accessed at www.isbe.state.il.us/assessment/pdfs/lexile.pdf.  Full-
sized posters can be obtained from MetaMetrics. 
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